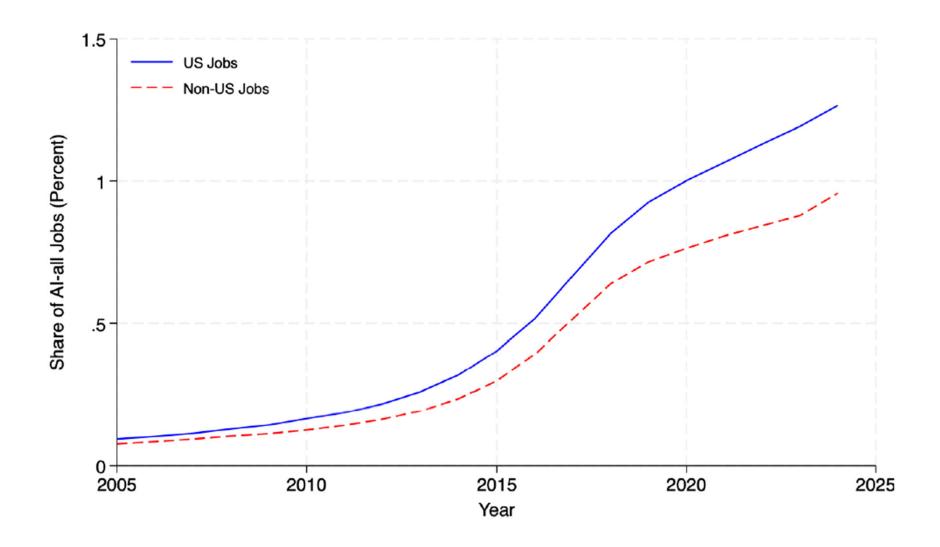
Paper Session 1:

Economic Effects of Payments, Data, and Al in Financial Services

Tania Babina, UMD, NBER, CEPR
TaniaBabina.com

FDIC 2025 Conference

Al Became Important over Past Decade



Babina et at (2025): "Artificial Intelligence and Firms' Systematic Risk"

Which Firms Benefit from AI?

- Anyone can buy some key inputs to Al
 - Hire Deep Learning Engineers, rent data storage and compute, use open-source models
- But, firms with large proprietary data have competitive edge in Al
 - Large firms that generate more data have better Al
 - Babina et al (2024) JFE: "Artificial Intelligence, Firm Growth, and Product Innovation"

Why? Large Firms Own Customer Data (Not Their Customers!)

 This gives large banks monopoly power over customer data and advantage in Al

- Solution: policies that reallocate data ownership rights away from bank to its customers
 - Babina et al (2025) JFE: "Customer Data Access and Fintech Entry: Early Evidence from Open Banking"

Broader Economic Issues: Drivers of Data Monopolies and Policies for Remedy

- Legal property rights (firms own customer data)
 - Policy: open banking (Norway BNPL paper)
- Market fragmentation (inability to pay across apps)
 - Policy: fast payments systems (India UPI paper)
- Incumbent inertia (innovator dilemma)
 - Policy: Fintech law forcing firms to use AI (China paper)

Discussion of:

Buy Now Pay (Less) Later Leveraging Private BNPL Data in Consumer Banking

By Kasper Roszbach

(Norges Bank and University of Groningen) et al

Big Picture Questions

- How competitive is this market?
- What does the key regression capture?
 - Information vs. selection vs. learning effects
- Who are BNPL customers?

How Competitive is this Market? Market Structure and Sample

- 1,066,000 loan applicants (2018–2022)
- 31% (393,000) receive offers from Bank
- Only 8,052 (2%) accept loan

- Competitive market, yet tests on market power
- Selection at each stage needs more clarity

Key Regression Framework

• Outcome = $\beta \times BNPL$ Customer + controls

- What does β capture?
 - Selection into BNPL customers?
 - Bank's private information?
 - Learning by doing (aka by borrowing)?

Evidence from Tables

- Table 3 (Cols 4–6): Coefficient drops 50% with controls
- Economic significance falls: 100% → 25% (17/66.7)
 - Suggests selection is key
- Table 10: No repayment difference internal vs. external BNPL
 - Challenges 'learning by doing' claim

Information Channel

- Internal BNPL customers:
 - More likely to receive loan offers
 - Offered lower interest rates
- No difference in defaults vs. external BNPL customers

Strong evidence of information channel

Discussion of:

Integrating Fragmented Networks:
The Value of Interoperability in Money
and Payments

By **Alexander Copestake** (International Monetary Fund) et al

Authors' Main Argument (Paper's Contribution)

 Interoperability across fragmented payment platforms boosted UPI adoption

 Cross-app payments enabled transactions impossible in closed systems

Additional Mechanism: Lower Costs

- Consumers pay no fees; merchants face minimal acceptance costs via QR codes
 - Easy QR code deployment → wide merchant coverage
- Effective transaction cost = 0 → encourages adoption
- Not clear how much interoperability mattered vs. lower transactions costs (and other drivers of transaction volume)

Discussion of:

The Transformative Role of Artificial Intelligence and Big Data in Banking

By Junjie Xia

(Central University of Finance and Economics and Peking University) et al

Big Picture Questions

- What is the key contribution?
 - Need more thorough literature review
 - Eg, what is marginal contribution to Babina et al JFE 2025 "Customer Data Access and Fintech Entry: Early Evidence from Open Banking"?
- Threats to identification

What is the Key Contribution? Literature Review in Table 1 as Reference Point: by Chioda, Gertler, Higgins, Medina «FinTech Lending to Borrowers with No Credit History"

Table 1: Comparison of studies that predict creditworthiness

Citation	Country	Loan Type	% with Credit Bureau Score	Data	Methods	AUC
(1)	(2)	(3)	(4)	(5)	(6)	(7)
This paper	Mexico	FinTech credit card	0%	Delivery app transactions data, digital footprints, credit history for those with limited credit history (but no credit scores)	XGBoost	0.796
Agarwal, Alok, Ghosh, and Gupta (2023)	India	FinTech loan	81%	Digital data from mobile phones; call logs; demographics, address, bank statements, salary slips; traditional credit score (CIBIL)	Random forest, XGBoost, logit	0.738 for sample with credit history, 0.674 for sample without credit history
Albanessi and Vamossy (2024)	US	Credit card	100%	Credit bureau files and credit scores	Hybrid deep neural net- work/gradient boosting	0.906
Berg, Burg, Gombovi, and Puri (2020)	Germany	FinTech loan	94%	Digital footprints (device type, operating system, email service provider, writing style, etc.), credit scores	Logit	0.734
Björkegren and Grissen (2020)	A middle- income South American country	Mobile phone airtime credit	85%	Mobile phone call logs and text data, history of phone bill payment, credit bureau data	Random forest, logit	0.772

35

Threats to Identification: Key Regression Framework

- Outcome = $\beta \times Post_2019 \times Small_firm + controls$
 - Identification: FinTech initiative in 2019 as exogenous shock
 - Identification relies on differences for small vs large firms after this aggregate shock
 - Potential confounds: COVID, Ant Group crackdown
 - SUTVA concerns: aggregate shock, GE effects
- Need to address key threats to identification heads on

Thank you!