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Motivation 

• Existing literature has explored the impact of FinTech on
fund management, market microstructure, distributional 
effects, corporate culture, small business financing, and 
banking competition 
- e.g., Easley et al., 2021; Li et al., 2021; Fuster et al., 2022; 

DeMiguel et al., 2023; Babina et al., 2024; Hau et al., 2024,
Guo et al., 2025 

• Limited empirical evidence on how these technologies 
reshape banking operations and credit decision-making 
processes 
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What do we do? 

• Empirical study: 
- Leverage a large loan-level dataset from a leading commercial

bank in China 
- Examine how AI and big data impacts the banking operation,

particular in credit rating and loan performance 
- Explore the synergy between AI and big data 

• Empirical strategy: 
- Using a policy mandate to adopt AI and big data as an exogenous

shock to the bank 
- Three-Year Development Plan (2019–2021) for FinTech 
- Difference-in-differences approach 
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What do we find? 

• The adopting of AI and big data enhances credit rating accuracy 
and reduces loan default rates, particularly for SMEs 
- Unclassified credit rating rate drop by 2.4 percentage points (a 40.1% decline) 

- Loan default rate drops by 2.7 percentage points (a 29.6% decline) 

• Highlight the channel of information advantages by conducting 
the heterogenous analysis – the effects are more profound for 
- Firms lacking formal financial statement information or public data 

- Loans with shorter maturities and no collateral 
- Regions with lower economic development and higher linguistic diversity 
- First-time borrowers and long-distance borrowers 
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What do we find? 

• Big data unlocks the full potential of AI models 

• Analyzing the bank’s two-stage adoption: 
- The initial machine learning upgrade (without big data) reduced      

unclassified credit ratings by 1.6 percentage points 
- Once big data integrated, the reduction reached 3.6 percentage points 
- More than doubled the improvement. 

• Big data turns AI from a static tool into a truly adaptive and 
dynamic analytic instrument 
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Literature and contributions (I) 

• Impact of Machine Learning (ML) in Finance: 
- Fund performance (Easley et al., 2021) 
- Corporate culture (Li et al., 2021) 
- Market microstructure (Fuster et al., 2022) 
- Distributional effects (DeMiguel et al., 2023) 
- Decision-making process (Begenau et al., 2018) 

• Our paper – banking operations 
- How these technologies affect banking operations – credit ratings and 

loan default rates 
- Address information asymmetries and scarcity, and improve risk 

management 
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Literature and contributions (II) 

• FinTech and SMEs: (ML, LLM, AI) 
- Financial constraints (Petersen and Rajan, 1994, etc.) 
- Regions with less competitive banking sectors (Frost et al., 2020) 
- Substituting traditional bank lending (Gopal and Schnabl, 2022) 
- Enhances customer acquisition (Agarwal et al., 2019, 2022) 
- Boosts vendor sales growth (Hau et al., 2024) 
- Banking competition (Guo et al., 2025) 

• Our paper – bank loans to SMEs 
- Enabling more accurate assessments of SME creditworthiness 
- Lower default rates 
- Improves SMEs‘ access to bank credit with lower cost 
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Literature and contributions (III) 

• Information advantages of FinTech 
- Big-Tech company (Alibaba platform) expand credit to vendors (Hau et 

al., 2024) 
- Mitigates asymmetric information challenges (Livshits et al., 2016) 
- Affect lender competition and lending (Vives and Ye, 2025) 

• Our paper – addressing incomplete information and
information asymmetries 
- Firms with incomplete financial records or limited public information 
- Unsecured loans (without collaterals) 
- Regions with lower economic development and higher linguistic diversity 
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Literature and contributions (IV) 

• Big data in Economics and Finance 
- Organizational productivity and efficiency (Brynjolfsson and McElheran, 

2016) 
- Enhancing decision-making processes and create competitive advantages

for large firms (Begenau et al., 2018) 
- Data accumulation and AI-driven innovation (Cong et al., 2025) 

• Our paper – The synergy of big data and AI models 
- Unlocks the full potential of AI 
- Combining with structured and unstructured data (scanned financial 

documents, business contracts, textual transaction records, transactional 
VAT data, etc.) 

- Produce a more profound effect on banking operations 
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Institutional background 

• The Bank 
- Historically, human decision-making through conventional methods, 

such as shadow ratings and hierarchical analysis 
- Heavily rely on human judgment and the quality of data inputs 
- High "unclassified" or "missing" credit ratings, especially for SMEs 

• FinTech adoption policy  
- Three-Year Development Plan (2019–2021) for FinTech (PBOC) 
- Promoting the adoption of advanced financial technologies in the

banking industry 
- Enabling financial institutions to improve efficiency, reduce costs, and 

enhance the accuracy of decision-making processes 
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Institutional background 

• The Bank’s adoption on FinTech 
- In July 2019, implementing machine learning techniques, logistic

regression models 
- In October 2020, incorporating sophisticated techniques and big data 
• Big data: large-scale data and unstructured data 
- External data sources: e.g., National Business Registration System and 

National Intellectual Property Administration database 
- Unstructured data: e.g., scanned documents, firm-to-firm transaction receipts, 

and various image-based records 
• To optimize the utilization of big data, the bank also implement 
- Machine learning models: artificial neural networks (ANN) and federated 

learning models (FLM) 
- Recognition technologies: Optical Character Recognition (OCR) and 

Natural Language Processing (NLP) 
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Data 

• Source 
- Loan-level data from a major commercial bank in China 

• Sample 
- January, 2015 – December, 2023 
- Approximately 4.53 million loans for 475,325 firms 

Year 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total 

Firms 95291 79448 75266 80416 74611 73353 120429 166237 254644 475,325 

Loans 417163 333368 321521 352866 305670 281315 523831 776723 1217431 4,529,888 
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Data representative (I) 

• Reginal distribution 
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Data representative (II) 

• Industrial  distribution 
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Facts on credit rating 

• Unclassified credit ratings 
- Before the adoption of AI and big data, the bank had a substantially high 

degree of unclassified credit ratings. 

• After the adoption, the rate of unclassified credit rating decline
dramatically 

- Particularly for SMEs 
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SMEs vs large firms 

• In the pre-adoption period, SMEs had higher unclassified credit 
rating rate, higher loan default rate and higher interest payment, 
compared to large firms 
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Empirical strategy 

• Difference-in-differences (DID) setting 
- SMEs as the treatment group 
- Large firms as the control group 
- July 2019 (the mandate to adopt FinTech) as an exogeneous shock 

�!,# = ����$×����#+�$ + �% + �# + �& + �!,# , 

- Include firm, industry, region, and time fixed-effects 
- Robustness checks: parallel-trend; placebo (non-existent time, Monte 

Carlo permutation); regional-level variations 
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Baseline results – credit rating 

• Unclassified credit rating rate among SMEs decreases by 2.4 percentage
points, constituting an approximately 40.1% decline (=2.4%/5.985%) 
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Baseline results – default rate 

• Loan default rate among SMEs decreases by 2.7 percentage points, 
constituting an approximately 29.6% decline (=2.7%/9.12%) 
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Robustness – parallel-trend 

• No significant pre-trend in the outcomes prior to the adoption 
• Substantial shift in both the magnitude and statistical significance following 

the adoption 

Unclassified credit rating Default rate 

21 



  

 
   

Robustness – placebo test I 

• Monte Carlo permutation method 
• The distributions are centered around zero, indicating no systematic bias 
• Baseline coefficient significantly smaller than the values observed in the 

placebo (-0.024 for unclassified rating; -0.027 for default rate) 

Unclassified credit rating Default rate 
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Robustness – placebo test II 

• Non-existent time periods 
• The coefficient is statistically insignificant 
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Robustness – competing stories 

• Concern: Other contemporaneous policies aimed at supporting SMEs 
- e.g., government support programs or tax incentives 

• Solution: Regional variations 
- Compare regions with higher than top 5%/10% pre-adoption unclassified 

credit rating rates (treatment group) to other regions (control group) 
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  Robustness – more controls 

• Include an indicator = 1 if missing firm-level financial statement 
• Include city-level controls – GDP and fiscal revenue 
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  Robustness – more fixed-effects 

• Include time-varying city-specific and region-specific fixed-effects 
• e.g., local economic cycles, policy interventions or development programs 
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  Robustness – Small verse medium 

• Smaller firms benefit more than medium-sized firms from the adoption 
• Information frictions drive the technology’s impact 
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    Heterogeneous analysis – firm-level (I) 

• Information scarcity 



    Heterogeneous analysis – firm-level (II) 

• Missing history 



   Heterogeneous analysis – loan-level 

• Uncollateralized and short-term loans 



   Heterogeneous analysis – region-level 

• Underdeveloped and complex regions 



   Extension – accessibility and borrowing cost 

• Extend more credit at lower interest rates to SMEs (financial inclusion) 
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The synergy between big data and AI models 

• Two significant phases 
- In July 2019, implementing machine learning techniques 
- In October 2020, incorporating big data with Advanced AI models
and recognition technologies 

�!,# = �����$ × ����1# + �����$ × ����2# + �$ + �% + �# + �& + �!,#, 

- �� represents the first adoption 
- �� represents the second adoption 
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The synergy between big data and AI models 

• Integrating big data produces a more significant impact 
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 The synergy between big data and AI models 

• Restricting the sample with firm-level financial information 
• Improve risk assess and prevent fraud through dynamic monitoring 
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Conclusion 

• Provides compelling evidence of the transformative impact
of AI and big data on the banking industry 
- Significantly reduces the prevalence of "unclassified" credit 

ratings 
- Loan default rate also declines 
- Increase credit accessibility with lower borrowing cost 
- Integrating big data with AI models and recognition technologies

has a more profound impact than traditional FinTech models 

• Highlight the information advantages channel 
• Underscore the importance of big data 

36 



  Thank You ! 
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