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Abstract

This paper studies the problem of missing observations on the outcome variable in

a discrete choice network model. The research question is motivated by an empirical

study of the spillover effect of home mortgage delinquencies, where mortgage repay-

ment decisions can only be observed for a sample of all the borrowers in the study

region. We show that the nested pseudo-likelihood (NPL) algorithm can be readily

modified to address this missing data problem. Monte Carlo simulations indicate that

the proposed estimator works well in finite samples and ignoring this issue leads to a

severe downward bias in the estimated spillover effect. We apply the proposed estima-

tion procedure using data on single-family residential mortgage delinquencies in Clark

County of Nevada in 2010, and find strong evidence of the spillover effect. We also

conduct some counterfactual experiments to illustrate the importance of consistently

estimating the spillover effect in policy evaluation.

Keywords: missing data, mortgage defaults, networks, NPL, rational expectation.

JEL: C21, R31
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1 Introduction

The past decades have seen a fast progress in the theoretical development of network models.

Yet, the empirical applications of network models are still limited due to the high cost of

collecting network data. Moreover, most existing estimation methods for network models

require that the whole network, instead of a random sample of the network nodes or links,

to be observed by the researcher, which escalates the difficulty of data collection. Hence, it

is of great practical importance to develop econometric methods to analyze network models

with partially observed or sampled network data. The current literature on this topic can be

divided into two research strands. The first strand focuses on partially observed or completely

unobserved network links (see, e.g., Liu 2013, Chandrasekhar & Lewis 2016, de Paula et al.

2019, Hardy et al. 2019, Lewbel et al. 2019, Breza et al. 2020, Boucher & Houndetoungan

2020, Griffith 2020), while the second strand focuses on the missing data problem in the

outcome or covariates of network nodes (see, e.g., Sojourner 2013, Wang & Lee 2013a,b,

Boucher et al. 2014, Liu et al. 2017). Our paper contributes to the second research strand

by studying the problem of missing observations on the outcome variable in a discrete choice

network model. It complements the studies by Boucher et al. (2014), Wang & Lee (2013a,b)

and Liu et al. (2017) for the same missing data problem in linear network models.

The research question in this paper is motivated by an empirical study of the spillover

effect of mortgage delinquencies. To establish a direct link connecting mortgage repayment

decisions of neighboring homeowners, we build an empirical model based on the discrete

choice network model in Lee et al. (2014), where a mortgage borrower’s repayment decision

depends not only on neighboring foreclosures in the previous time period (the contagion

effect in Towe & Lawley 2013) but also on the rational expectation of neighbors’ repayment

decisions in the current time period (the spillover effect in Chomsisengphet et al. 2018).1 An
1In the literature, “contagion effects” and “spillover effects” are often used interchangeably. To distin-

guish between the time-lagged effect of past foreclosures from the contemporaneous effect of current default
decisions, we refer to the former as the contagion effect (as in Towe & Lawley 2013), and the latter as the
spillover effect.
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underlying assumption in Lee et al. (2014) is that the researcher can observe the outcomes

and covariates of all individuals in the network. Although this assumption is quite common

for network models, it is not realistic for a mortgage repayment behavior study. More

specifically, the outcome variable in this empirical model is defined as being 90 days past

due or worse (90+ DPD). This information is only available in loan performance data, which

is usually collected by the mortgage servicer serving the loans and only covers a portion of

all the active mortgage borrowers in the study region depending on the mortgage servicer’s

market share. Ignoring this missing data issue, by treating the sampled borrowers in the

loan performance data as the full population of all the active mortgage borrowers in the

study region, may lead to a biased estimate of the spillover effect.

In this paper, we show that, by supplementing the loan performance data with public

records on covariates of all the borrowers in the study region, the nested pseudo-likelihood

(NPL) algorithm (Aguirregabiria & Mira 2007) can be readily modified to address this miss-

ing data issue. Our Monte Carlo simulations indicate that the proposed estimator works

well in finite samples and ignoring this missing data issue leads to a severe downward bias

in the estimated spillover effect. Using empirical data on single-family residential mortgage

delinquencies in Clark County of Nevada in 2010, we find evidence for both a time-lagged

contagion effect (Towe & Lawley 2013) and a contemporaneous spillover effect (Chomsisen-

gphet et al. 2018). Consistent with the Monte Carlo simulations, we find that the spillover

effect is underestimated when the missing data problem is left unaddressed. We comple-

ment our estimation effort with two counterfactual studies to illustrate the importance of

consistently estimating the spillover effect in policy evaluation. In the first study, we hypo-

thetically remove properties in foreclosure, one at a time, from the data, and calculate the

corresponding reduction in the aggregate delinquency level. In the second study, we intro-

duce a positive utility shock, which can be interpreted as a mortgage payment reduction,

to all residents in the study region, and plot the percentage reduction in delinquency rates

as the shock increases. In both counterfactual studies, we find that the overall reduction in
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mortgage delinquencies tends to be understated when the contemporaneous spillover effect

is ignored or underestimated due to the missing data problem.

Our empirical findings contribute to a large literature on mortgage defaults and cor-

responding neighborhood effects. In this literature, some work has shown that mortgage

defaults have a significant and highly localized impact on house prices in the neighborhood

(Immergluck & Smith 2006, Schuetz et al. 2008, Harding et al. 2009, Campbell et al. 2011,

Hartley 2014, Gerardi et al. 2015); while other work has been focusing on the impact of nega-

tive equity on default likelihood (Deng et al. 2000, Foote et al. 2008, Bhutta et al. 2010, Elul

et al. 2010, Calomiris et al. 2013, Gerardi et al. 2018). Nevertheless, with a few exceptions,

little work has been done to study the interaction of neighboring mortgage borrowers’ de-

fault decisions. Towe & Lawley (2013) relate a homeowner’s default decision to the observed

default decisions of the neighbors in the previous time period (i.e., neighboring foreclosures).

Munroe & Wilse-Samson (2013) investigate the impact of a completed foreclosure on future

neighboring foreclosure filings. Gupta (2019) studies the contagion effect of foreclosures trig-

gered by an interest rate increase. Huang et al. (2021) develop an exogenous proxy for the

fraction of mortgages in negative equity based on the timing of foreclosures in a neighbor-

hood, and use it to estimate the spillover effect of foreclosures. The most close work to ours

is Chomsisengphet et al. (2018), which establishes a direct connection between neighboring

mortgage borrowers’ contemporaneous default decisions. However, in Chomsisengphet et al.

(2018), the aforementioned missing data problem is left unaddressed.

The rest of the paper proceeds as follows. Section 2 describes the model, NPL estimation

strategy and Monte Carlo simulation experiments. Section 3 presents the data, empirical

results and counterfactual studies. Section 4 concludes.
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2 Model and NPL Estimation

2.1 Model

Consider a network with a set of n individuals N ≡ {1, · · · , n}. The topology of the

network is represented by an n× n adjacency matrix W = [wij]. Let yi ∈ {0, 1} denote the

dichotomous choices of individual i ∈ N , Xi denote a row vector of exogenous covariates,

and F (·) denote a distribution function. Lee et al. (2014) propose a binary choice network

model, where, in the rational expectation equilibrium, the probability of yi = 1 is given by

pi ≡ Pr(yi = 1) = F (Xiβ + λ
∑

j∈N\{i}
wijpj). (1)

In Equation (1), the spatial lag term
∑

j∈N\{i}wijpj is the weighted sum of the expected

outcomes of individual i’s connections, with the coefficient λ capturing the network spillover

effect.

To motivate the general econometric model defined in Equation (1), we consider a random

utility model for home mortgage delinquencies. As in a standard random utility model, the

utility of delinquency (yi = 1) is normalized to zero, and the utility of making loan payments

(yi = 0) is given by

ϵi −Xiβ − λ
∑

j∈N\{i}
wijyj, (2)

where ϵi is an i.i.d. idiosyncratic shock with the distribution function F (·). In the empirical

study, F (·) is the standard logistic function, and wij = w∗
ij/

∑
j∈N\{i}w

∗
ij, where w∗

ij is a

known constant capturing the geographical proximity between i and j. More specifically, as

the literature suggests the spillover effect of distressed properties is very local and decays

rapidly with distance (e.g., Campbell et al. 2011, Gerardi et al. 2015, Cohen et al. 2016), we

assume w∗
ij = 1/dij if i and j are within a cutoff distance (say, 0.5 mile), where dij denotes

the geographical distance between i and j, and w∗
ij = 0 otherwise. Thus,

∑
j∈N\{i}wijyj

is the distance-weighted delinquency rate in mortgage borrower i’s neighborhood, with its
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coefficient λ representing the spillover effect of mortgage delinquencies.

As mortgage delinquencies (90+ DPD) cannot be directly observed by other borrowers,

we assume borrowers make delinquency decisions yi simultaneously. We further assume that

X = (X ′
1, · · · , X ′

n)
′ and distribution of ϵi are common knowledge among all borrowers in

the area, but the realization of ϵi is privately observed by borrower i. In the random utility

model, borrower i goes delinquent on loan payments if the expected utility of yi = 0, given

the information set Ii = {W,X, ϵi}, is less than zero, i.e.

E(ϵi −Xiβ − λ
∑

j∈N\{i}
wijyj|Ii) < 0

or, equivalently,

ϵi < Xiβ + λ
∑

j∈N\{i}
wijE(yj|Ii).

As the distribution function of ϵi is F (·), borrower i’s probability of delinquency is

pi ≡ Pr(yi = 1) = F (Xiβ + λ
∑

j∈N\{i}
wijE(yj|Ii)).

In the rational expectation equilibrium (Brock & Durlauf 2001a,b), borrower i’s expectation

on borrower j’s delinquency decision, i.e. E(yj|Ii), should be equal to the mathematical

probability for borrower j to be delinquent, i.e. pj. Therefore, the equilibrium of the random

utility model is given by Equation (1). Lee et al. (2014) provide a sufficient condition for

the existence of a unique solution to the fixed point problem defined in Equation (1). In

the case where F (·) is the standard logistic function and
∑

j∈N\{i}wij = 1 for all i ∈ N ,

Equation (1) has a unique solution if |λ| < 4.

To highlight the importance of the spillover effect, we consider the following example.

Suppose Xi is the number of foreclosures initiated in the previous period in borrower i’s

neighborhood.2 In the absence of the spillover effect, i.e., λ = 0, the direct marginal effect
2It is worth pointing out that, in the empirical study, the initiation of foreclosure is indicated by the notice

of default (NOD) or the notice of trustee sale (NOTS) filed in the county office. Thus, different from the
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Figure 1: The Spillover Effect of Home Mortgage Delinquencies

of Xi on pi is
∂pi
∂Xi

= f(Xiβ)β,

where f(x) = ∂F (x)/∂x. For a borrower j that is far from i, the indirect marginal effect of

Xi on pj is
∂pj
∂Xi

= 0.

That is, when the neighborhoods of borrowers i and j (represented by the solid circles

in Figure 1) do not overlap, foreclosures in borrower i’s neighborhood have no impact on

borrower j’s delinquency decision. On the other hand, when λ ̸= 0, the direct marginal effect

of Xi on pi is
∂pi
∂Xi

= (1 + λψii)fiβ, (3)

and the indirect marginal effect of Xi on pj is

∂pj
∂Xi

= λψjifjβ, (4)

delinquency decision in current period that is unobservable to the neighbors, the foreclosure in the previous
period is publicly observable.
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with fi = f(Xiβ + λ
∑

j∈N\{i}wijpj) and ψij denoting the (i, j)th element of the matrix

Ψ = W (I − λdiag{fi}W )−1diag{fi},

where diag{fi} is an n×n diagonal matrix with the ith diagonal element being fi. Equation

(4) implies that, when λ ̸= 0, foreclosures in borrower i’s neighborhood may affect borrower

j’s delinquency decision even if they are far from each other. This can be seen in Figure 1.

Suppose house h goes into foreclosure. Knowing that a foreclosure in borrower i’s neighbor-

hood has an impact on borrower i’s delinquency risk, borrower k will adjust the delinquency

decision accordingly. As borrower k is in borrower l’s neighborhood (represented by the

dotted circle in Figure 1), borrower k’s delinquency risk will affect borrower l, which will

in turn affect borrower j. Thus, as a result of the chain reaction, a borrower’s delinquency

decision can be influenced by a foreclosure in a far away neighborhood.

2.2 NPL estimation with missing outcome data

The main difficulty in estimating Equation (1) is that p = (p1, · · · , pn)′ is not observable.

Lee et al. (2014) suggest to use the nested fixed point (NFXP) algorithm (Rust 1987), with

an internal subroutine that solves the fixed point problem given by Equation (1) for p, to

implement the maximum likelihood (ML) estimation. To bypass the computational burden

of the NFXP algorithm, which repeatedly solves the fixed point problem at each candidate

parameter value in the search for the maximum of the log-likelihood function, Lin & Xu

(2017) adopt the computationally more efficient NPL algorithm (Aguirregabiria & Mira

2007).

Both Lee et al. (2014) and Lin & Xu (2017) assume that the researcher can observe the

outcomes and exogenous characteristics of all individuals in the network. In our empirical

study of home mortgage delinquencies, the exogenous variables Xi include the home owner-

ship, house square footage, number of bedrooms, property value, loan-to-value (LTV) ratio,
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and number of foreclosures initiated in the previous period in borrower i’s neighborhood.3

All this information is public and available for all borrowers in a disclosure state.4 On the

other hand, the outcome variable yi is defined as being 90+ DPD, and this information is

only available in the loan performance data. In the empirical study, we use the loan per-

formance data assembled by a government agency that regulates several national mortgage

servicers. Similarly to other popular residential mortgage databases that are commercially

available (e.g., CoreLogic or BlackKnight), the coverage of this data depends on the mort-

gage servicer’s market share. For the specific study region of our empirical analysis, Clark

County of Nevada, this data covers about 26% of the single-family residential mortgages. In

other words, among all the mortgage repayment decisions in the population, about 26% of

them are observed and recorded in our data.

More generally, suppose we can observe the exogenous variables Xi for all i ∈ N , and

the outcome variable yi for i ∈ N ∗, where N ∗ is a random sample of N with the sample size

given by n∗ = |N ∗|. If one drops individuals with missing outcome data and only uses the

sample N ∗ in the estimation, then the estimated model becomes

Pr(yi = 1) = F (Xiβ + λ
∑

j∈N ∗\{i}
wijp

∗
j), (5)

where p∗j is the solution of the fixed point problem

p∗i = F (Xiβ + λ
∑

j∈N ∗\{i}
wijp

∗
j), (6)

for i ∈ N ∗. Comparing Equation (5) with Equation (1), we can see that the exclusion of

individuals with missing outcome data introduces a measurement error to the spatial lag

term
∑

j∈N\{i}wijpj. The measurement error comes from two sources. First, some neighbors

of individual i are omitted from the spatial lag term. Second, the equilibrium delinquency
3Both property value and LTV ratio are recorded on the loan origination date in the publicly available

transaction data. The initiation of foreclosure indicated by the NOD or NOTS is also publicly available.
4The study region of our empirical analysis is in Nevada, which is a disclosure state.
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probability obtained from Equation (6) is miscalculated. Take the network in Figure 1 as an

example. Suppose we do not observe the delinquency decision of borrower k, i.e., k /∈ N ∗.

If we exclude borrower k from the network in the estimation, then the connection between

borrowers i and j is cut off. As a result, the interdependence of i and j’s delinquency

decisions will be attributed to some other confounding factors, leading to an underestimated

spillover effect. Hence, simply excluding individuals with missing outcome data may lead to

biased estimation results. In the following, we propose a modified NPL algorithm to address

this missing data problem.

Let θ = (λ, β′)′. The modified NPL algorithm starts from an initial value p(0) =

(p
(0)
1 , · · · , p(0)n )′ and takes the following iterative steps:

Step 1 Given p(t−1) = (p
(t−1)
1 , · · · , p(t−1)

n )′, obtain θ̂
(t)

= argmax lnL(θ; p(t−1)), where

lnL(θ; p(t−1)) =
∑
i∈N ∗

{yi lnF (Xiβ + λ
∑

j∈N\{i}
wijp

(t−1)
j )

+(1− yi) ln[1− F (Xiβ + λ
∑

j∈N\{i}
wijp

(t−1)
j )]}.

Step 2 Given θ̂
(t)
, update p(t) = (p

(t)
1 , · · · , p

(t)
n )′ according to

p
(t)
i = F (Xiβ̂

(t)
+ λ̂

(t) ∑
j∈N\{i}

wijp
(t−1)
j ). (7)

Repeat Steps 1 and 2 until the process converges.

It is worth noting that the updating rule for delinquency probabilities given by Equation

(7) depends only onXi, but not on yi. As we observeXi for all i ∈ N , Equation (7) calculates

the updated delinquency probabilities for all i ∈ N , which allows us to obtain the spatial lag

term in the log-likelihood function free of measurement error. Kasahara & Shimotsu (2012)

show that a key determinant of the convergence of the NPL algorithm is the contraction

property of Equation (1), which is ensured by the condition |λ| < 4 in the case with F (·)

being the standard logistic function and
∑

j∈N\{i}wij = 1 for all i ∈ N . When the NPL
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algorithm converges, the NPL estimator θ̂ satisfies θ̂ = argmax lnL(θ; p̂), where

lnL(θ; p̂) =
∑
i∈N ∗

{yi lnF (Xiβ + λ
∑

j∈N\{i}
wij p̂j)

+(1− yi) ln[1− F (Xiβ + λ
∑

j∈N\{i}
wij p̂j)]},

and p̂ = (p̂1, · · · , p̂n)′ is the solution of the system of equations

p̂i = F (Xiβ̂ + λ̂
∑

j∈N\{i}
wij p̂j),

for i ∈ N . Under some standard regularity conditions, it follows by a similar argument

as in Aguirregabiria & Mira (2007) that the proposed NPL estimator is consistent and

asymptotically normal.

The estimation of the asymptotic variance of the NPL estimator θ̂ also needs to take

this missing data issue into consideration. Let Ω̂ be an n × n diagonal matrix with the

ith diagonal element being f̂ 2
i /[F̂i(1 − F̂i)], where F̂i = F (Xiβ̂ + λ̂

∑
j∈N\{i}wij p̂j) and

f̂i = f(Xiβ̂ + λ̂
∑

j∈N\{i}wij p̂j). Let J be a n∗ × n selector matrix such that JX collects

elements in X = (X ′
1, · · · , X ′

n)
′ corresponding to i ∈ N ∗. The asymptotic variance of θ̂ can

be estimated by

(Σ̂1 + λ̂Σ̂′
2)

−1Σ̂1(Σ̂1 + λ̂Σ̂2)
−1

where

Σ̂1 = [X,Wp̂]′J ′JΩ̂J ′J [X,Wp̂],

Σ̂2 = [X,Wp̂]′J ′JΩ̂J ′JW (In − λ̂diag{f̂i}W )−1diag{f̂i}[X,Wp̂].

2.3 Monte Carlo simulations

To investigate the finite sample performance of the proposed NPL algorithm, we conduct a

simulation study. In the data generating process, we consider both generated and empirical
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Figure 2: Friendship Network

networks. The generated networks provide stylized facts on how the missing data bias is

affected by the network configuration (e.g., a sparse network v.s. a dense network). The

empirical network shows how the proposed estimator performs in a more realistic setting.

The generated network has two spatial layouts based on the rook contiguity and the

queen contiguity. More specifically, we allocate n = 2500 spatial units into a lattice of

50× 50 squares. Under the rook contiguity, w∗
ij = 1 if the squares containing i and j share

a common side and w∗
ij = 0 otherwise. Under the queen contiguity, w∗

ij = 1 if the squares

containing i and j share a common side or vertex and w∗
ij = 0 otherwise. For both spatial

layouts, the adjacency matrix is given by W = [wij] with wij = w∗
ij/

∑
j∈N\{i}w

∗
ij.

The empirical network is pulled from the Add Health survey, which collected data on the

social environment of students in grades 7-12 from roughly 130 private and public schools

in the Unites States in the academic year 1994-95. In the Add Health survey, every student
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attending the sampled schools on the interview day was asked to identify their friends (up

to five males and five females) from the school roster. We use School #56 in the Add

Health survey for the simulation study. After removing isolated students with no friends, the

remaining 1546 students in School #56 are directly or indirectly connected in the friendship

network as shown in Figure 2. On average, the students nominated 4.71 friends, with a

standard deviation of 2.85. Let w∗
ij = 1 if student i nominated student j as a friend and

w∗
ij = 0 otherwise. The adjacency matrix of the friendship network is given by W = [wij]

with wij = w∗
ij/

∑
j∈N\{i}w

∗
ij.

In the simulation study, F (·) is the standard logistic function, and Xi = (1, x2i), where

x2i is a scalar that is generated from a uniform distribution on [−1, 1]. We set λ = 1

and β = (β1, β2)
′ = (−1, 2)′ in the data generating process. We experiment with different

sampling rates n∗/n ∈ {0.75, 0.5, 0.25}, and assume that Xi is observable for all i ∈ N while

yi is observable only for i ∈ N ∗.

We consider two NPL estimators in the simulation study. The NPL-1 estimator excludes

individuals with missing observations on the outcome variable and only uses the sample N ∗

for the estimation. Hence, the NPL-1 estimator is likely to be biased due to the measurement

error in the spatial lag term as explained in Section 2.2. The NPL-2 estimator follows the

modified NPL algorithm described in Section 2.2. We conduct 1000 simulation repetitions.

The mean and standard deviation (SD) of the empirical distribution of the NPL estimates

are reported in Table 1. With the NPL-1 estimator, the estimated spillover effect (λ) is

downward biased, the estimated intercept (β1) is upward biased, and the estimated slope

(β2) is essentially unbiased. The bias increases as the sampling rate decreases. Comparing

the rook contiguity and the queen contiguity, we can see that the bias is larger when the

underlying network is more sparse (i.e., under the rook contiguity). The direction and size of

the NPL-1 estimator’s bias are comparable between the generated rook/queen network and

the empirical friendship network. On the other hand, the NPL-2 estimates are unbiased with

both generated and empirical networks, even when the sampling rate is low (n∗/n = 0.25).
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Table 1: Monte Carlo Simulation Results

NPL-1 NPL-2
λ = 2 β1 = −1 β2 = 2 λ = 2 β1 = −1 β2 = 2

Rook contiguity
n∗/n = 0.75 1.314(0.327) −0.655(0.168) 2.026(0.112) 1.991(0.356) −0.996(0.180) 2.001(0.115)
n∗/n = 0.50 0.625(0.290) −0.294(0.152) 2.054(0.131) 1.973(0.441) −0.987(0.223) 2.006(0.138)
n∗/n = 0.25 0.232(0.311) −0.077(0.145) 2.061(0.189) 1.958(0.615) −0.976(0.314) 2.004(0.198)
Queen contiguity
n∗/n = 0.75 1.511(0.405) −0.757(0.206) 2.006(0.109) 1.985(0.413) −0.994(0.209) 1.999(0.109)
n∗/n = 0.50 0.894(0.418) −0.445(0.215) 2.020(0.132) 1.955(0.495) −0.978(0.250) 2.003(0.134)
n∗/n = 0.25 0.289(0.394) −0.127(0.198) 2.033(0.188) 1.929(0.715) −0.962(0.362) 2.006(0.193)
Friendship network
n∗/n = 0.75 1.560(0.308) −0.795(0.142) 1.991(0.133) 1.983(0.327) −0.993(0.150) 2.002(0.133)
n∗/n = 0.50 1.103(0.353) −0.577(0.163) 1.987(0.161) 2.005(0.417) −1.002(0.195) 2.006(0.162)
n∗/n = 0.25 0.572(0.414) −0.320(0.173) 1.995(0.238) 1.974(0.587) −0.989(0.271) 2.023(0.242)

Mean(SD)
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Table 2: Variable Definitions and Summary Statistics

RRP data MM data
Definition Mean SD Mean SD

Dependent Variable
delinquency 1 if 90+ DPD in 2010, and 0 otherwise. 0.19 0.39
Explanatory Variables
neighbor foreclosures # of foreclosures initiated in 2009 within the 0.1 mile neighborhood. 16.69 13.68 14.88 12.04
owner 1 if the property is occupied by the owner. 0.73 0.44 0.78 0.41
square footage The property size in thousand square feet. 2.05 0.78 2.04 0.75
bedrooms # of bedrooms of the property. 3.39 0.83 3.40 0.82
log property value The logarithm of the property’s value at the loan origination date. 12.35 0.52 12.27 0.51
LTV_60to80 1 if the LTV ratio at the loan origination date is between 60% and 80%. 0.28 0.45 0.31 0.46
LTV_80to100 1 if the LTV ratio at the loan origination date is between 80% and 100%. 0.56 0.50 0.52 0.50
LTV_gt100 1 if the LTV ratio at the loan origination date is greater than 100%. 0.07 0.25 0.07 0.26
# of observations 221,947 58,52616



3 Empirical Analysis

3.1 Data

Our main data sources are the Mortgage Metrics (MM) database and the Renwood Realty

Property (RRP) database. The MM data, assembled by the Office of the Comptroller of the

Currency (OCC) since January 2008, consists of loan-level origination and monthly perfor-

mance information of residential first-lien mortgages serviced by seven national banks and

a federal savings association regulated by the OCC. The RRP data covers over 151 million

properties and 3,143 counties which translates into 99% of the U.S. population coverage.5

We focus on the single-family residential mortgage repayment information in the MM data

for Clark County of Nevada in 2010. The RRP data provide a wholistic coverage on the

covariates of almost all single-family mortgage borrowers in that region, including those not

in the MM data. Using the notation in Section 2.2, we consider the set of borrowers in the

RRP data as N and that in the MM data as N ∗. In our study region, the RRP transaction

data contains 221,947 loan records distributed across 155 census tracts,6 whereas the MM

sample only has 58,526 records.

The MM data is in a panel structure with monthly updated information for loan perfor-

mance. The outcome variable of the empirical model – mortgage delinquency (90+ DPD) –

is extracted from this data. It is worth pointing out that a mortgage delinquency is different

from a foreclosure. The former is a decision made by a homeowner to not make a mortgage

payment, while the latter is a legal process in which a lender attempts to recover the balance
5The RRP database consists of three types of data: (1) the transaction data, which provides a history

of sales and financing activities on residential housing units, (2) the property tax assessment data collected
from county (township) tax assessor’s office, and (3) the pre-foreclosure data (e.g., public records of NOD
and NOTS). We use mortgage transaction data (excluding cash transactions) in RRP to construct the pool
of active mortgages in the study region. Although we do not know if a mortgage is paid off at the time
of our analysis, we feel comfortable that our RRP mortgage data provides a reasonable proxy of the true
“active” mortgage population given the fact that the average loan age of the mortgages in our study region
is 5.2 years as of the end of 2009. We use the RRP tax assessment data for a complete set of housing
characteristic measures. The pre-foreclosure data of RRP provides us information of the existing foreclosure
filings, through which we can identify the contagion effect.

6We focus on census tracts where most single family homes are located by dropping census tracts with
less than 1000 single-family loan records in the RRP data.
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of a loan from a borrower who has stopped making payments to the lender by forcing the

sale of the asset used as the collateral for the loan. Once a loan reaches a serious delin-

quency state, such as 90+ DPD, it is usually up to the state level laws and policies (e.g., the

foreclosure law) as well as financial institute level programs (e.g., proprietary modification

programs for loss mitigation) to determine how the foreclosure process proceeds. Because

we are interested in a borrower’s decision instead of the legal aspect of its consequence,

we define the outcome variable as being 90+ DPD in 2010. On the other hand, it is well

documented that mortgage delinquency decisions could be affected by neighboring foreclo-

sures in the previous time period (Towe & Lawley 2013). Hence, we include the number of

foreclosures initiated in 2009 in a borrower’s neighborhood as a covariate in the empirical

model. The initiation of foreclosure is indicated by the notice of default (NOD) or the notice

of trustee sale (NOTS) filed in the county office. This information is publicly available in

a disclosure state (e.g., Nevada) and contained in the RRP data. Other covariates in the

empirical model includes the home ownership, house square footage, number of bedrooms,

property value (on the loan origination date), and LTV ratio (on the loan origination date).

All this information is also publicly available and contained in the RRP data. We match the

loans in the MM data with those in the RRP data based on encrypted property IDs.7

Table 2 lists the definitions of the dependent variable and explanatory variables as well

as their summary statistics for both the RRP and MM datasets. Overall, the summary

statistics of the explanatory variables are comparable between the two datasets. In both

datasets, the average number of neighbor foreclosures is 15~17. The majority of mortgage

borrowers claimed to be the owners of their properties. The average size of the property

is 2000 square feet, and the typical number of bedrooms is between 3 and 4. The average

property value is about $220K. The number of borrowers with an initial LTV greater than

80% is slightly more than the number of borrowers with an initial LTV less than 80%.
7The encrypted property IDs were generated based on the actual address of each property. After the

encrypted property IDs were generated, address information has been removed from both the RRP and MM
data. Thus we, as the end data user, have no access to personally identifiable information.
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In the empirical analysis, we treat a census tract as a spatial network. Thus, the scope

of spatial interactions is restricted to the census tract level. It is natural to think that

the interdependence of delinquency decisions is more likely to exist between nearby houses.

We therefore adopt the conventional inverse-distance-based spatial weights and assign zero

weights to houses located farther than a cutoff-distance apart. More specifically, we define

the spatial weight as w∗
ij = 1/dij if i and j are within a cutoff distance, where dij denotes

the geographical distance between i and j, and w∗
ij = 0 otherwise. We normalize the spa-

tial weight as wij = w∗
ij/

∑
j∈N\{i}w

∗
ij, so that the spatial lag term

∑
j∈N\{i}wijpj can be

interpreted as the distance-weighted average delinquency probability in a borrower’s neigh-

borhood. The radius of the neighborhood is given by the cutoff distance for w∗
ij = 0. In

the empirical study, we experiment with different cutoff distances ranging from 0.5 miles

to 0.1 miles and find the estimation results are robust. Figures 3-5 give a visualization of

the average number of neighbors of each house with different cutoff distances for the census

tracts used in the empirical analysis. Figure 6 plots the distribution of the delinquency rate

in each house’s neighborhood with different cutoff distances using the MM data. We can see

that the distribution of the delinquency rate is quite stable with different cutoff distances.

3.2 Estimation results

The estimation results are reported in Table 3. The first column reports the standard

logit estimates without accounting for the delinquency spillover effect. The second and third

columns report the NPL estimates of Equation (1) with the delinquency spillover effect. The

NPL-1 estimator falsely treat the borrowers in the MM data as the whole population and

only uses the information on those borrowers and their properties to estimate the model. As

explained in Section 2.2, the NPL-1 estimator is likely to be biased due to the measurement

error in the spatial lag term. The NPL-2 estimator is the consistent estimator proposed in

Section 2.2 for data with missing values on the dependent variable.

An implicit assumption of the general model given by Equation (1) is that the under-
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Figure 3: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.5 miles
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Figure 4: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.25 miles
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Figure 5: Average Number of Neighbors in a Census Tract with Cutoff Distance of 0.1 miles

22



Figure 6: Distribution of Delinquency Rates with Different Cutoff Distances
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lying network represented by the adjacency matrix W is exogenously predetermined. In

the empirical study, to alleviate the concern of network endogeneity caused by self-selection

of residential locations, we include block group fixed effects in the estimation.8 As argued

by Bayer et al. (2008) and Grinblatt et al. (2008), housing markets are thin, which limits

people’s ability to pick the exact residential location in their desired neighborhood. Hence,

people’s immediate neighbors can be considered as quasi-random conditional on the broad-

neighborhood fixed effect. The block group fixed effect also control for regional random

shocks (e.g., regional layoffs9) that could be confounded with the delinquency spillover ef-

fect.

For the logit model, all the coefficient estimates are statistically significant at the 5% level

with the expected signs (except that of bedroom is statistically insignificant). In particular,

a borrower’s delinquency risk increases with more neighboring foreclosures in the previous

time period, giving evidence to the contagion effect (Towe & Lawley 2013). The delinquency

risk also increases with a higher property value and LTV ratio. After controlling for the

other covariates (including the property value), larger houses have lower delinquency risks.

The positive sign of the coefficient estimate of owner is not surprising since occupancy

fraud is found to be common in various mortgage markets, including government-sponsored-

enterprise-guaranteed, private-securitized, and portfolio-held mortgage markets (Haughwout

et al. 2011, Elul & Tilson 2015, Piskorski et al. 2015, Griffin & Maturana 2016). Both

Haughwout et al. (2011) and Griffin & Maturana (2016) suggest loans with fraud occupancy

status perform much worse than otherwise comparable loans.

In both the NPL-1 and NPL-2 models, we find a positive and significant delinquency

spillover effect, while the coefficient estimates for other covariates remain largely the same.

The NPL-2 estimate of the delinquency spillover effect is more than twice the NPL-1 estimate.

This is consistent with our findings in the Monte Carlo simulations that ignoring the missing
8A block group is a subdivision of a census tract or block numbering area. It is the smallest geographic

entity for which the decennial census tabulates and publishes sample data.
9People who work together tend to live very close to one another. This means that when a company has

layoffs, this tends to affect particular neighborhoods — the regional layoffs.
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data issue in the MM data leads to a substantial downward bias of the estimated spillover

effect.

In our specification of the spatial weight wij, we assume wij = 0 if the geographical

distance between homeowners i and j is greater than a cutoff distance. For the estimation

results reported in Table 3, the cutoff distance is set to 0.5 miles. As a robustness check, Table

4 reports the NPL estimates with a cutoff distance of 0.1, 0.25, and 0.5 miles respectively. The

results from this sensitivity analysis are reasonable and consistent with our main findings. For

most covariates, the estimated coefficients are very similar with different cutoff distances.

For the delinquency spillover effect, as the cutoff distance decreases, the NPL-1 estimate

decreases significantly (e.g., 1.12 for 0.5 miles and 0.38 for 0.1 miles, with a drop of 66%)

whereas the NPL-2 estimate is considerably stable across different cutoffs (2.32 for 0.5 miles

and 2.12 for 0.1 mile, with a drop of less than 10%). The high sensitivity of the NPL-1

estimate to the cutoff distance makes intuitive sense. As the spatial network becomes more

sparse with a shorter cutoff distance, the bias of the NPL-1 estimate due to the missing data

issue becomes more severe since the neighborhood delinquencies in the MM sample become

less representative of the population level. This is consistent with our findings in the Monte

Carlo simulations that the bias of the estimated spillover effect is larger with a more sparse

network (under the rook contiguity).
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Table 3: Estimation Results

Logit NPL-1 NPL-2
delinquency spillover effect 1.1210* 2.3226***

(0.6459) (0.4629)
foreclosure contagion effect 0.0063*** 0.0058*** 0.0048***

(0.0013) (0.0012) (0.0011)
owner 0.0586** 0.0585** 0.0593**

(0.0274) (0.0270) (0.0270)
square footage -0.3104*** -0.3084*** -0.3061***

(0.0260) (0.0266) (0.0257)
bedrooms 0.0268 0.0261 0.0246

(0.0197) (0.0194) (0.0189)
log property value 0.8200*** 0.8149*** 0.8062***

(0.0289) (0.0325) (0.0325)
LTV_60to80 0.4499*** 0.4499*** 0.4487***

(0.0496) (0.0495) (0.0494)
LTV_80to100 0.8105*** 0.8103*** 0.8080***

(0.0479) (0.0479) (0.0479)
LTV_gt100 0.6670*** 0.6659*** 0.6630***

(0.0613) (0.0617) (0.0617)
block group dummies included included included
log-likelihood -27352.78 -27351.48 -27345.05
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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Table 4: NPL Estimation with Different Cutoff Distances

Cutoff dist. = 0.5 mi Cutoff dist. = 0.25 mi Cutoff dist. = 0.1 mi
NPL-1 NPL-2 NPL-1 NPL-2 NPL-1 NPL-2

delinquency spillover effect 1.1210* 2.3226*** 0.7677 2.1307*** 0.3796 2.1194***
(0.6459) (0.4629) (0.5698) (0.3942) (0.4732) (0.3217)

foreclosure contagion effect 0.0058*** 0.0048*** 0.0058*** 0.0044*** 0.0059*** 0.0037***
(0.0012) (0.0011) (0.0013) (0.0011) (0.0013) (0.0010)

owner 0.0585** 0.0593** 0.0585** 0.0594** 0.0584** 0.0591**
(0.0270) (0.0270) (0.0270) (0.0269) (0.0270) (0.0268)

square footage -0.3084*** -0.3061*** -0.3088*** -0.3054*** -0.3088*** -0.2998***
(0.0266) (0.0257) (0.0266) (0.0253) (0.0268) (0.0241)

bedrooms 0.0261 0.0246 0.0263 0.0245 0.0263 0.0233
(0.0194) (0.0189) (0.0194) (0.0187) (0.0195) (0.0180)

log property value 0.8149*** 0.8062*** 0.8157*** 0.8033*** 0.8169*** 0.7930***
(0.0325) (0.0325) (0.0326) (0.0325) (0.0327) (0.0328)

LTV_60to80 0.4499*** 0.4487*** 0.4499*** 0.4485*** 0.4498*** 0.4472***
(0.0495) (0.0494) (0.0495) (0.0494) (0.0495) (0.0494)

LTV_80to100 0.8103*** 0.8080*** 0.8104*** 0.8078*** 0.8104*** 0.8058***
(0.0479) (0.0479) (0.0479) (0.0479) (0.0479) (0.0478)

LTV_gt100 0.6659*** 0.6630*** 0.6661*** 0.6626*** 0.6664*** 0.6605***
(0.0617) (0.0617) (0.0617) (0.0617) (0.0617) (0.0616)

block group dummies included included included included included included
log-likelihood -27351.48 -27345.05 -27351.97 -27344.11 -27352.47 -27341.00
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1.
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3.3 Counterfactual studies

To illustrate the policy relevance of our empirical model and estimation strategy, we carry

out two counterfactual studies. In the first study, we hypothetically remove properties in

foreclosure, one at a time, from the data, and calculate the corresponding reduction in the

aggregate delinquency level. More specifically, we first calculate the predicted delinquency

probability for every borrower in the study region and add the probabilities up to obtain the

initial aggregate delinquency level. Then, we remove a foreclosure from the study region,

re-calculate the predicted delinquency probability for every borrower, and then add them up

to get the new aggregate delinquency level. Taking the difference between the two aggregate

delinquency levels (before and after the removal of a foreclosure) gives the reduction in the

aggregate delinquency level from removing that foreclosure. We then repeat this exercise for

every foreclosure in the study region to obtain the corresponding reduction in the aggregate

delinquency level. Table 5 reports the summary statistics of the reductions based on the

logit, NPL-1 and NPL-2 estimates in Table 3. From the table, we can see that the marginal

effect of removing a property in foreclosure tends to be understated when the spillover effect

is ignored (logit) or inconsistently estimated due to the missing data problem (NPL-1). This

exercise sheds light on the importance of correctly estimating the delinquency spillover effect

in evaluating the effectiveness of a foreclosure prevention program.

Table 5: Aggregate Delinquency Reduction from the Removal of a Neighboring Foreclosure

Mean SD Min Max
Logit 0.16 0.09 0 0.63
NPL-1 0.19 0.12 0 0.81
NPL-2 0.22 0.15 0 1.14

In the second study, we add a constant c, which can be interpreted as a mortgage payment

reduction, to the utility function (2) of all mortgage borrowers in the study region. The

dotted, dashed, and solid lines in Figure 7 represent, respectively, the predicted percentage

reduction in delinquency rates as c increases, based on the logit, NPL-1 and NPL-2 estimates
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Figure 7: Reduction in Delinquency Rates with a Utility Shock c
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in Table 3. Similar to the first study, we can see that the marginal effect of loan payment

reduction is understated when the spillover effect is ignore (logit) or inconsistently estimated

due to the missing data problem (NPL-1).

4 Conclusion

This paper proposes a modified NPL algorithm for the missing data problem in the dependent

variable of a discrete choice network model. We carry out Monte Carlo simulations to show

that the proposed estimator works well in finite samples and ignoring this missing data

issue leads to a downward bias of the estimated spillover effect. We provide an empirical

illustration of our method and conduct some counterfactual experiments to demonstrate the
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importance of consistently estimating the spillover effect in policy analysis.

Although the motivation of this paper comes from the missing data issue in home mort-

gage delinquencies, the applicability of the proposed method is not limited to this specific

setting. As the econometric model described in Section 2.1 is very general, this method can

be applied to many other data sets. For example, in the Add Health survey, every student

attending the sampled schools on the interview day was asked to identify their friends from

the school roster and complete a questionnaire (in-school survey) on basic socio-demographic

characteristics. Then, a subset of students selected from the rosters of the sampled schools

was asked to complete a longer questionnaire containing more sensitive individual and house-

hold information (in-home survey). Using the notations in Section 2.2, the students that

participated in the in-school survey can be considered as N , and those that participated

in the in-home survey can be considered as N ∗. Suppose the outcome variable of a study

is from the in-home survey, while the covariates are from the in-school survey. Then, the

researcher would encounter the same missing data problem as in this paper. When the out-

come variable is continuous, Liu et al. (2017) find that the spillover effect in a linear network

model is also likely to be underestimated neglecting this missing data problem. They pro-

pose a nonlinear least squares estimator to address this missing data problem and provide

an empirical illustration using the Add Health data. On the other hand, when the outcome

variable is binary, the modified NPL method in this paper can be adopted to consistently

estimate the spillover effect.
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