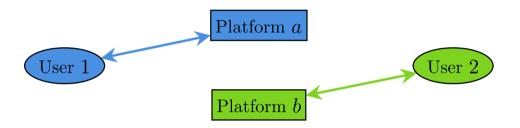
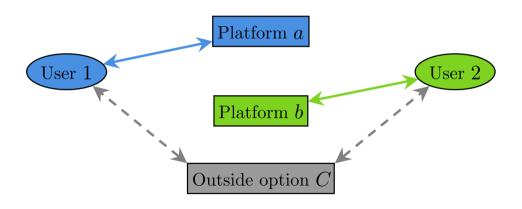
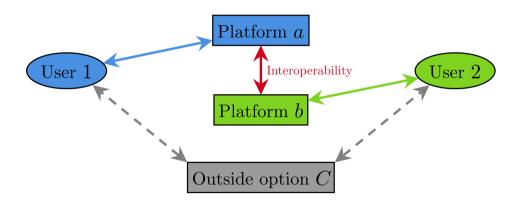
Integrating Fragmented Networks: Interoperability in Money and Payments

Alexander Copestake¹ Divya Kirti¹ Maria Soledad Martinez Peria¹ Yao Zeng²

¹International Monetary Fund ²Wharton and NBER


September 2025 24th FDIC Annual Bank Research Conference


Motivation


- Money: fundamental economic technology, with network effects (Menger 1892, Fisher 1911, Krugman 1984)
- This creates a dilemma for payment system designers:
 - ⇒ Maximize network size, but accept limited choice & dominant platforms... or
 - ⇒ Encourage diverse options, but accept market fragmentation
- Dilemma recurs in many contexts:
 - ⇒ Domestic payment systems (e.g., Brainard 2019, Yi 2021, Cunliffe 2023, Lane 2025)
 - \Rightarrow Cross-border payment systems (e.g., Duffie 2023, Financial Stability Board 2024)
 - \Rightarrow Multi-polar currency paradigm? (e.g., Lagarde 2025, Pan 2025)

- Conceptual framework:
 - ⇒ Interoperability can unlock gains by connecting fragmented networks
 - ⇒ Larger benefits where more fragmented ex ante
- Leverage unique data to present causal evidence on interoperability
 - ⇒ Observe integration of two large digital payment networks in India
 - ⇒ Exploit regional variation in ex-ante fragmentation to observe counterfactual
- Combining theory + data: integration raised total digital payments by 57%

Money and payments: Menger (1892), Fisher (1911), Krugman (1984), Kiyotaki Wright (1989), Farhi Maggiori (2018), Coppola Krishnamurthy Xu (2023), Duffie (2019), Brunnermeier Payne (2022, 2023)

Interoperability between networks: Ferrari Verboven Degryse (2010), Björkegren (2022), Brunnermeier Limidio Spadavecchia (2023), Bourreau Valletti (2015), Bianchi Bouvard Gomes Rhodes Shreeti (2023)

Network tech.: Katz Shapiro (1985), Weinberg (1997), Rochet Tirole (2003, 2004), Björkegren (2019), Crouzet Gupta Mezzanotti (2023), Alvarez Argente Lippi Mendez Patten (2023), Higgins (2024), Wang (2024)

Money and payments: Menger (1892), Fisher (1911), Krugman (1984), Kiyotaki Wright (1989), Farhi Maggiori (2018), Coppola Krishnamurthy Xu (2023), Duffie (2019), Brunnermeier Payne (2022, 2023)

⇒ Interoperability shapes <u>trade-off</u> between network size/dominance and choice

Interoperability between networks: Ferrari Verboven Degryse (2010), Björkegren (2022), Brunnermeier Limidio Spadavecchia (2023), Bourreau Valletti (2015), Bianchi Bouvard Gomes Rhodes Shreeti (2023)

Network tech.: Katz Shapiro (1985), Weinberg (1997), Rochet Tirole (2003, 2004), Björkegren (2019), Crouzet Gupta Mezzanotti (2023), Alvarez Argente Lippi Mendez Patten (2023), Higgins (2024), Wang (2024)

Money and payments: Menger (1892), Fisher (1911), Krugman (1984), Kiyotaki Wright (1989), Farhi Maggiori (2018), Coppola Krishnamurthy Xu (2023), Duffie (2019), Brunnermeier Payne (2022, 2023)

⇒ Interoperability shapes <u>trade-off</u> between network size/dominance and choice

Interoperability between networks: Ferrari Verboven Degryse (2010), Björkegren (2022), Brunnermeier Limidio Spadavecchia (2023), Bourreau Valletti (2015), Bianchi Bouvard Gomes Rhodes Shreeti (2023)

 \Rightarrow Interoperability has large impact on <u>demand</u> relative to <u>within-country</u> counterfactual

Network tech.: Katz Shapiro (1985), Weinberg (1997), Rochet Tirole (2003, 2004), Björkegren (2019), Crouzet Gupta Mezzanotti (2023), Alvarez Argente Lippi Mendez Patten (2023), Higgins (2024), Wang (2024)

Money and payments: Menger (1892), Fisher (1911), Krugman (1984), Kiyotaki Wright (1989), Farhi Maggiori (2018), Coppola Krishnamurthy Xu (2023), Duffie (2019), Brunnermeier Payne (2022, 2023)

⇒ Interoperability shapes <u>trade-off</u> between network size/dominance and choice

Interoperability between networks: Ferrari Verboven Degryse (2010), Björkegren (2022), Brunnermeier Limidio Spadavecchia (2023), Bourreau Valletti (2015), Bianchi Bouvard Gomes Rhodes Shreeti (2023)

 \Rightarrow Interoperability has large impact on <u>demand</u> relative to <u>within-country</u> counterfactual

Network tech.: Katz Shapiro (1985), Weinberg (1997), Rochet Tirole (2003, 2004), Björkegren (2019), Crouzet Gupta Mezzanotti (2023), Alvarez Argente Lippi Mendez Patten (2023), Higgins (2024), Wang (2024)

⇒ Interoperability between otherwise fragmented networks <u>amplifies</u> strategic complementarities

Money and payments: Menger (1892), Fisher (1911), Krugman (1984), Kiyotaki Wright (1989), Farhi Maggiori (2018), Coppola Krishnamurthy Xu (2023), Duffie (2019), Brunnermeier Payne (2022, 2023)

⇒ Interoperability shapes <u>trade-off</u> between network size/dominance and choice

Interoperability between networks: Ferrari Verboven Degryse (2010), Björkegren (2022), Brunnermeier Limidio Spadavecchia (2023), Bourreau Valletti (2015), Bianchi Bouvard Gomes Rhodes Shreeti (2023)

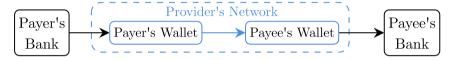
 \Rightarrow Interoperability has large impact on <u>demand</u> relative to <u>within-country</u> counterfactual

Network tech.: Katz Shapiro (1985), Weinberg (1997), Rochet Tirole (2003, 2004), Björkegren (2019), Crouzet Gupta Mezzanotti (2023), Alvarez Argente Lippi Mendez Patten (2023), Higgins (2024), Wang (2024)

 $\Rightarrow \ \ Interoperability \ between \ otherwise \ fragmented \ networks \ \underline{amplifies} \ strategic \ complementarities$

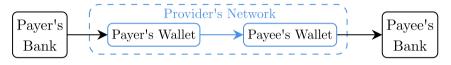
Digital payments in India: Ghosh Vallee Zeng (2022), Dubey Purnanandam (2023), Alok Ghosh Kulkarni Puri (2024), Crouzet Ghosh Gupta Mezzanotti (2024), Agarwal Ghosh Li Ruan (2024)

 \Rightarrow Interoperability helps explain <u>striking growth</u> and downstream impacts of digital payments


Roadmap

- 1. Context
- 2. Conceptual framework
- 3. Empirical analysis
- 4. Wider implications

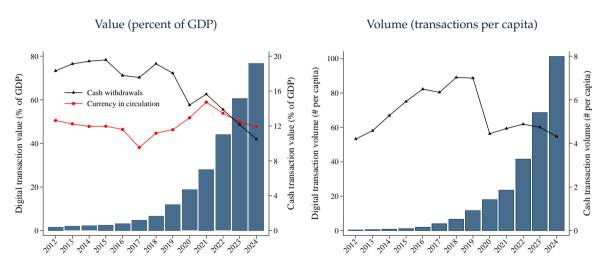
1. Context


Setting: India's Unified Payments Interface

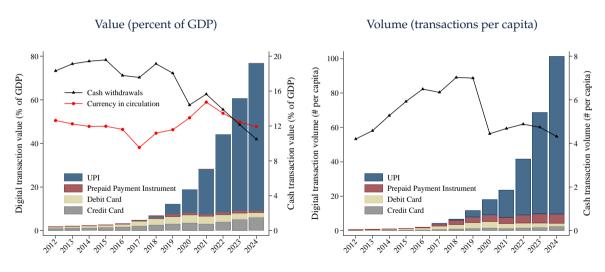
- Prior to launch of UPI in 2016, a closed-loop digital payments provider was dominant

Setting: India's Unified Payments Interface

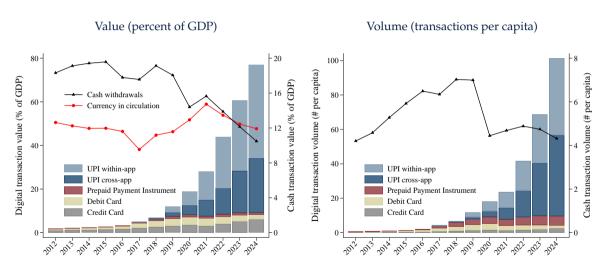
- Prior to launch of UPI in 2016, a closed-loop digital payments provider was dominant



- UPI offered no-fee transactions between users of any participating payments provider



- UPI is now world's largest fast payments system by volume, 20B transactions/month


Retail digital payments grew rapidly, cash has begun to decline

UPI drove most of this growth in digital payments

Interoperability was important in driving UPI's growth

2. Conceptual Framework

Model in one slide

Setup

- Users choose between two digital payments platforms (a and b) and cash
- Heterogeneous preferences ⇒ users initially fragment across platforms

Result 1: Impact of interoperability

- Cost of fragmentation: unrealized cross-platform network benefits
- Interoperability unlocks cross-platform network benefits ⇒ both digital platforms more attractive ⇒ higher adoption relative to cash

Result 2: Varied impact of interoperability across districts

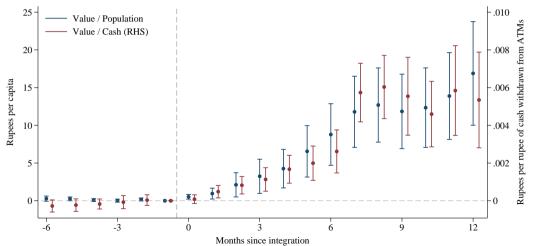
- Where more fragmented ex-ante: more unrealized network benefits
- In these districts, interoperability unlocks larger gains, faster growth in adoption

3. Empirical Analysis

Data

We observe two large payment networks before *and* after they became interoperable:

- a. $UPI \Rightarrow$ aggregated universe of interoperable transactions
 - Value/volume/users by district × month × payer app, for all apps
 - Value/volume/users by district × month × payer app × payee app, top four + 'other'
- b. Closed-loop wallet provider \Rightarrow major fintech incumbent prior to UPI
 - Value/volume/users by district × month
- C. Cash withdrawals
 - Value/volume by district × month × bank


Empirical specification closely aligned with theory

$$y_{dt} = \alpha_d + \alpha_{st} + \beta(F_d^+ \times 1_{\{t \ge t_0\}}) + \beta_Z(Z_d \times 1_{\{t \ge t_0\}}) + e_{dt}$$

- Compare evolution of P2M digital payments y_{dt} in districts d with above ($F_d^+ = 1$) vs. below-median fragmentation across networks prior to integration
- No anticipation? Integration followed RBI directive mandating interoperability
- Parallel trends?
 - ⇒ State-time fixed effects = compare districts within state
 - \Rightarrow Control for differences by ex-ante *level* of digital payments Z_d , use only *composition*
 - ⇒ No differential pre-trends

Digital payments grew faster in 'treated' districts after integration

Difference in P2M transaction value per capita

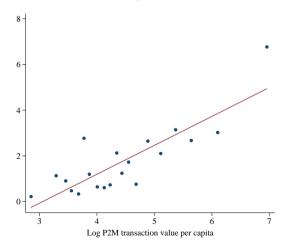
Further results and robustness

- Drivers of growth

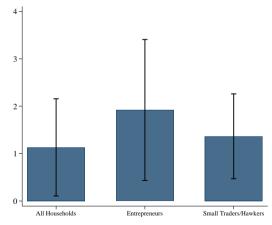
- ⇒ Margins: partly ↑value/transaction + ↑transactions/user; mostly ↑users/capita Co>
- ⇒ Channels: ↑transaction value both between and within platforms Go>

- Identification

- ⇒ Matching: pair more- with less-fragmented districts on log population God
- ⇒ 2SLS: instrument with proximity to incumbent's pre-demonetization hubs © >
- ⇒ Additional controls: baseline cash usage, rural vs. urban, early-adopter banks ⁽⁶⁾
- \Rightarrow Placebos: randomized treatment assignment and an alternative t_0


4. Wider Implications

Theory + empirics \Rightarrow large aggregate impact of interoperability


- 1. Empirics provide well-identified cross-sectional estimates
- 2. Aggregating to national level requires solving missing intercept problem (e.g., Wolf 2023, Buera Kaboski Townsend 2023)
- 3. Theory provides no-fragmentation intercept of zero
- ⇒ Construct population-weighted sum of districts' differential adoption relative to places with little ex-ante fragmentation
- ⇒ Usage of digital payments in India increased by 57% due to networks' integration

Positive spillovers from digital payments in 'treated' districts

Households borrowing from NBFCs (2018T3, %)

Difference in *P*(NBFC borrowing) (p.p.)

Longer-term impacts of interoperability on network structure?

- This paper: demand-side effects, exploiting fixed supply (e.g., quality, infrastructure)
- Over longer horizon, interoperability could have ambiguous effects on supply
 - \Rightarrow Coordination effect: investment in quality by a raises ROI on similar investment by b
 - \Rightarrow Free-rider effect: a doesn't internalize positive externalities for b, so a under-invests
 - $\Rightarrow \,$ See, e.g., Brunnermeier Payne (2022, 2023), Brunnermeier Limodio Spadavecchia (2023)
- Novel supply-side feature in our context: interoperability *erosion*
 - ⇒ Suppliers re-create provider-level network effects, despite interoperability mandate
 - \Rightarrow Thus *de jure* interoperability \neq *de facto* interoperability
 - ⇒ Maintaining true interoperability may thus require recurrent policy interventions

Conclusion

Interoperability unlocks gains by unifying fragmented networks

- Money and payments are fundamental network technologies
- Dilemma between network benefits and choice recurs in many settings
 - ⇒ Domestic payment systems across a wide range of countries
 - ⇒ Multiple competing initiatives to reform cross-border payments
 - ⇒ Multi-polar currency paradigm?
- This paper: evidence from merger of large existing payment networks that interoperability can help resolve this dilemma, unlocking gains for users

Integrating Fragmented Networks: Interoperability in Money and Payments

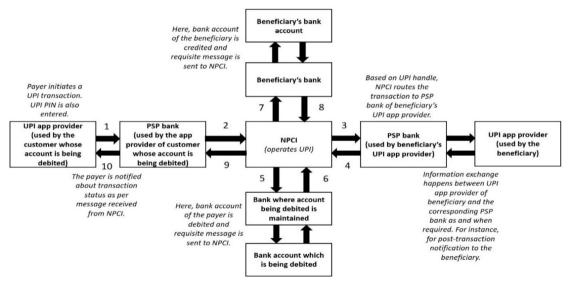
Alexander Copestake¹ Divya Kirti¹ Maria Soledad Martinez Peria¹ Yao Zeng²

¹International Monetary Fund ²Wharton and NBER

September 2025 24th FDIC Annual Bank Research Conference

Appendix

Multiple apps offer similar services



Detailed UPI transaction flow (payer initiated)

UPI has become the largest fast payment system by volume

Transaction volume (millions)

Notes: US comprises Zelle from 2017 and RTP from 2020. Fast payments: real-time or near real-time transfers of funds between accounts of end users as close to a 24/7 basis as possible (Frost et al. 2024).

Source: BIS, Statista, TCH.

■ Back 3/

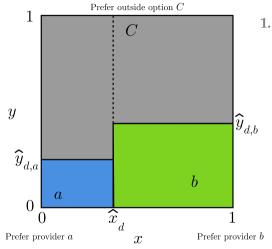
Baseline setup

Static model of payment competition highlighting convenience and network effects (inspired by Farhi Maggiori 2018, Coppola Krishnamurthy Xu 2023)

- Users uniformly distributed across unit squares reflecting two preference dimensions $(x, y) \sim U([0, 1] \times [0, 1])$ in each district $d \in \{1, ..., D\}$
- Each user desires to make a within-district payment
- Users choose from three payment methods: digital platforms a and b, cash C
- All users choose their payment method simultaneously

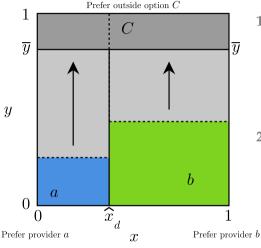
Utility from using cash

$$u_{d,x,y}^C = \gamma y$$

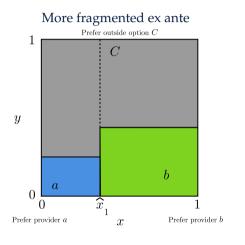

- Utility $u_{d,x,y}^{C}$ of user (x,y) in district d using cash C depends on:
 - 1. Cash preference y—reflecting e.g., demographics or informality
 - 2. Cash benefit parameter $\gamma > 0$ —assumed large enough that some always prefer cash
- Utility from using cash does *not* depend on others' adoption
 - ⇒ Assume all already accept cash, so no network effects

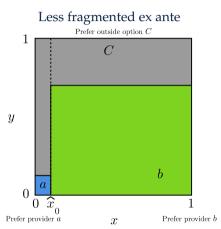
Utility from using digital payments

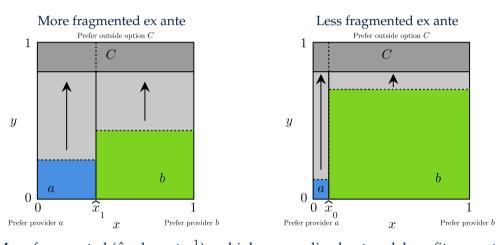
$$u_{d,x,y}^{a} = \begin{cases} 1 + \kappa N_{d,a}^{*} & \text{if } x \leq \hat{x}_{d} \\ 0 & \text{if } x > \hat{x}_{d} \end{cases} \qquad u_{d,x,y}^{b} = \begin{cases} 0 & \text{if } x \leq \hat{x}_{d} \\ 1 + \kappa N_{d,b}^{*} & \text{if } x > \hat{x}_{d} \end{cases}$$


- Utility $u_{d,x,y}^i$ of user (x,y) in district d using platform $i \in \{a,b\}$ depends on:
 - 1. Preference *x* relative to exogenous boundary $\hat{x}_d \in (0, \frac{1}{2})$, reflecting e.g., brand familiarity or preferences for differentiated services as in Parlour Rajan Zhu (2022)
 - 2. Size of the accessible user base $N_{d,i}^*$, which in the absence of interoperability is equal to the number of users $N_{d,i}$ of i in d
 - 3. Network benefit $\kappa > 0$ each accessible user generates for each other platform user

Baseline

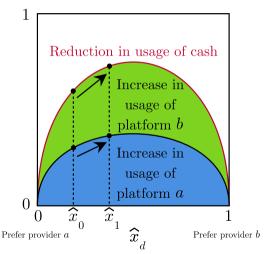

- 1. Users initially adopt platform $i \in \{a, b\}$ until <u>i-specific</u> network benefits balanced by cash preference of threshold user $\hat{y}_{d,i}$
 - \Rightarrow Digital payments users fragmented
 - \Rightarrow Some potential network benefits unrealized


Interoperability \Rightarrow cross-platform benefits \Rightarrow higher total adoption


- 1. Users initially adopt platform $i \in \{a, b\}$ until *i*-specific network benefits balanced by cash preference of threshold user $\hat{y}_{d,i}$
 - ⇒ Digital payments users fragmented
 - ⇒ Some potential network benefits unrealized
- 2. Interoperability gives any platform user access to all such users: $N_{d,i}^* = N_{d,a} + N_{d,b}$
 - Unlocks cross-platform network benefits
 - Threshold users equalize at $\bar{y}_{d,a} = \bar{y}_{d,b} = \bar{y}$
 - ⇒ Higher adoption of digital payments relative to cash

Interoperability \Rightarrow larger gains where more fragmented ex ante

Interoperability \Rightarrow larger gains where more fragmented ex ante



- More fragmented (\hat{x}_d closer to $\frac{1}{2}$) \Rightarrow higher unrealized network benefits ex-ante \Rightarrow larger gains unlocked by interoperability \Rightarrow larger rise in adoption ex-post

Equilibrium concept and parameter restriction

- We focus on stable, rational equilibria in pure strategies
 - ⇒ In equilibrium, users' expectations about the total number of users adopting their chosen payment method are correct
 - ⇒ Following a deviation by a small but positive mass of users, choices revert to the same equilibrium
- We impose $\gamma > 1 + \kappa$ for simplicity, ensuring that some users always choose cash

Relative gains by platform

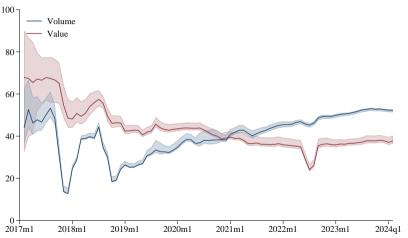
- Interoperability unlocks network gains for, so increases adoption of, both *a* and *b*
- Relative impact in more vs. less fragmented districts depends on level of \hat{x}_d
 - \Rightarrow Low \hat{x}_0 and \hat{x}_1 : negligible unrealized network benefits when $\hat{x}_0 \to 0$, so gains from interoperability <u>larger for both</u> <u>platforms</u> in \hat{x}_1
 - \Rightarrow High \hat{x}_0 and \hat{x}_1 : impact of interoperability on total adoption is flat in vicinity of $\hat{x}_d = \frac{1}{2}$, so if one platform gains more in \hat{x}_1 than \hat{x}_0 , the other must gain less

Model extensions

- Time-varying external shocks

- ⇒ *Intuition*: external shocks occurring at same time as interoperability preclude estimating impact of interoperability by comparing pre vs. post in a <u>single</u> district
- ⇒ *Implication*: test impact of interoperability by comparing pre vs. post in <u>two</u> districts with different ex ante fragmentation but facing same shock (i.e., parallel trends)

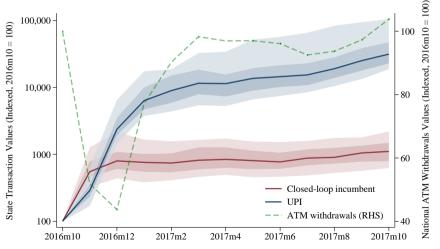
- Cross-district payments

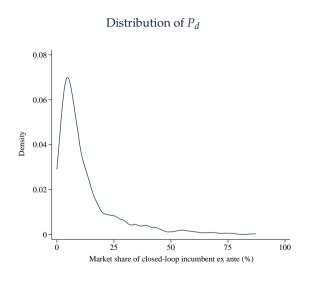

- \Rightarrow *Intuition*: in polar case where payments flow equally to all districts and $D \to \infty$, only mean fragmentation in destinations matters, no impact of fragmentation at origin
- ⇒ *Implication*: attenuates our estimates, giving lower bound on true effect

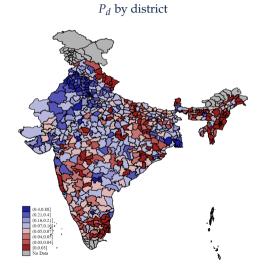
- Continuous preferences between platforms

- ⇒ *If preferences* > *network effects*: Users still fragment initially, results unchanged
- ⇒ *If preferences < network effects*: Users pool on one platform initially, no fragmentation
- ⇒ In both cases, interoperability unlocks gains by allowing choice *and* network effects

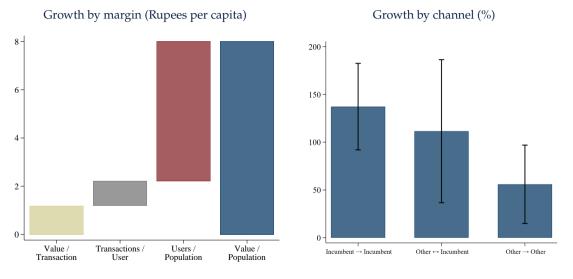
Fact 1: Most UPI transactions occur between users of different apps


Share of cross-app transactions on UPI (%)


⇒ Interoperability necessary for most transactions


Fact 2: After demonetization, UPI kept growing as others plateaued

Closed-loop and interoperable digital payments after demonetization (indexed)



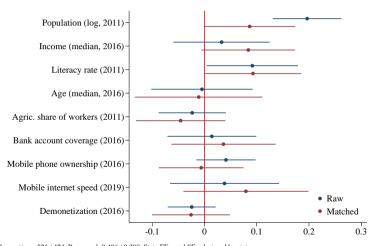
Presence of the incumbent varied substantially prior to integration

Higher growth across all margins and channels

Digital payments grew across all channels

Difference in P2M transaction values

	Total/pop	Total/cash	(Inc→Inc)/pop	(Inc↔Oth)/pop	(Oth→Oth)/pop
	(1)	(2)	(3)	(4)	(5)
$P_d^+ \times 1_{\{t > t_0\}}$	8.010***	0.00334***	11.75***	0.106***	1.989***
	(4.64)	(5.74)	(5.95)	(2.93)	(2.68)
District FEs	√	✓	✓	✓	✓
State-Time FEs	\checkmark	✓	\checkmark	✓	✓
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	✓	\checkmark	✓	✓
N	10,868	10,867	10,868	10,868	10,868
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	9.118	0.007	14.365	0	1.936
Mean $y_{dt}(P_d^+ = 0, t \ge t_0)$	6.795	0.012	2.77	0.191	5.179


Digital payments grew across all margins

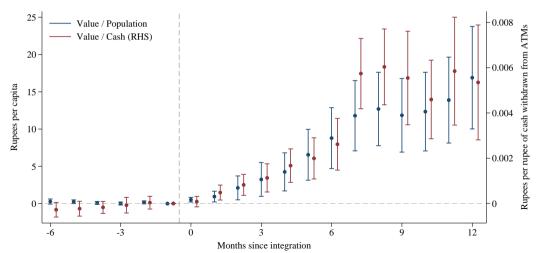
Breakdown of difference in P2M transaction value per capita

	Value / Transaction	Transactions / User	Users / Population
	(₹)	(#)	(#)
$P_d^+ \times 1_{\{t > t_0\}}$	9.354**	0.0939**	0.000832*
	(2.11)	(2.48)	(1.93)
District FEs	✓	✓	✓
State-Time FEs	\checkmark	\checkmark	\checkmark
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	\checkmark	\checkmark
N	10,868	10,860	10,860
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	344.854	3.262	0.002
Mean $y_{dt}(P_d^+ = 0, t \ge t_0)$	309.646	3.625	0.005

Matched sample is balanced on observables

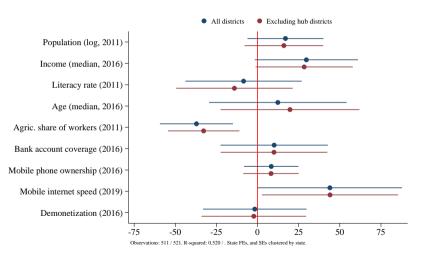
Association with F_d^+ , raw and matched

Observations: 521 / 474, R-squared: 0.406 / 0.398, State FEs, and SEs clustered by state.

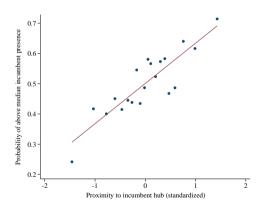

Similar results when matching on log of population

Difference in P2M transaction values

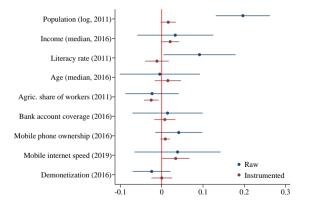
	Total/pop	Total/cash	(Inc→Inc)/pop	(Inc↔Oth)/pop	(Oth→Oth)/pop
	(1)	(2)	(3)	(4)	(5)
$P_d^+ \times 1_{\{t > t_0\}}$	6.777***	0.00336***	9.935***	0.0978***	1.644**
	(4.79)	(4.51)	(6.36)	(2.92)	(2.45)
District FEs	✓	✓	✓	✓	✓
State-Time FEs	✓	✓	✓	✓	\checkmark
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	✓	\checkmark	✓	\checkmark
N	10,868	10,867	10,868	10,868	10,868


Similar results when matching on log of population

Difference in P2M transaction values


Incumbent hub proximity is largely balanced on observables

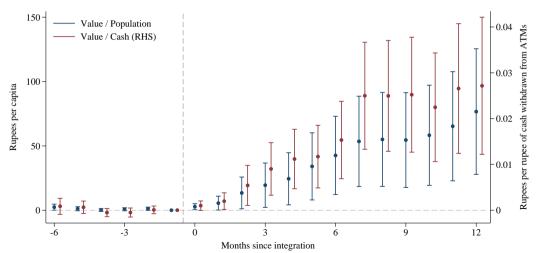
Association with proximity to the incumbent's hubs



Instrumenting incumbent presence P_d^+ with proximity to its hubs

First stage relationship between H_d and P_d^+

Association with P_d^+ , raw and instrumented


Similar results when instrumenting with hub proximity

Difference in P2M transaction values

	Total/pop	Total/cash	(Inc→Inc)/pop	(Inc↔Oth)/pop	(Oth→Oth)/pop
	(1)	(2)	(3)	(4)	(5)
$P_d^+ \times 1_{\{t > t_0\}}$	17.11***	0.0117***	18.67***	0.299*	5.046*
	(2.71)	(3.30)	(3.03)	(1.78)	(1.90)
District FEs	√	√	✓	✓	✓
State-Time FEs	\checkmark	✓	\checkmark	✓	\checkmark
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	✓	\checkmark	✓	✓
K-P F-Stat	25.25	25.25	25.25	25.25	25.25
N	10,621	10,620	10,621	10,621	10,621
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	6.511	0.007	1.656	0	9.613
Mean $y_{dt}(P_d^+ = 0, t \ge t_0)$	6.729	0.012	5.113	0.188	2.77

Similar results when instrumenting with hub proximity

Difference in P2M transaction values

Similar results when controlling for baseline cash usage

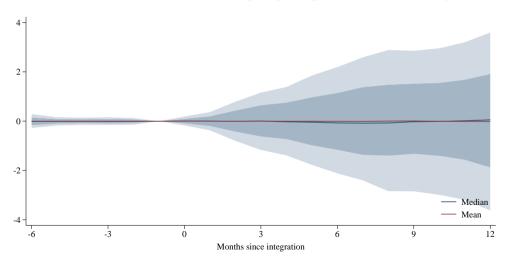
Difference in P2M transaction values

	Total/pop	Total/cash	(Inc→Inc)/pop	(Inc↔Oth)/pop	(Oth→Oth)/pop
	(1)	(2)	(3)	(4)	(5)
$P_d^+ \times 1_{\{t > t_0\}}$	5.609***	0.00193***	8.301***	0.0929***	1.796***
	(3.87)	(3.17)	(4.49)	(2.91)	(2.90)
District FEs	✓	√	✓	✓	✓
State-Time FEs	\checkmark	\checkmark	✓	✓	✓
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	\checkmark	\checkmark	✓	✓
Control: $Z_d^{cash} \times 1_{\{t \geq t_0\}}$	\checkmark	\checkmark	\checkmark	✓	✓
N	10,867	10,867	10,867	10,867	10,867
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	9.118	0.007	14.365	0	1.936
Mean $y_{dt}(P_{+}^{+} = 0, t > t_{0})$	6.795	0.012	2.77	0.191	5.179

Similar results when controlling for rural vs. urban districts

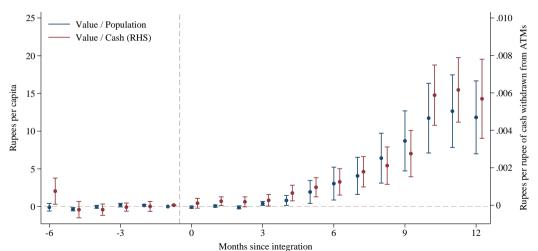
Difference in P2M transaction values

	Total/pop	Total/pop Total/cash (Inc→Inc)/po		(Inc↔Oth)/pop	(Oth→Oth)/pop	
	(1)	(2)	(3)	(4)	(5)	
$P_d^+ \times 1_{\{t > t_0\}}$	5.829***	0.00314***	8.844***	0.0767**	1.292**	
	(4.40)	(5.36)	(5.71)	(2.32)	(2.06)	
District FEs	✓	√	✓	✓	✓	
State-Time FEs	\checkmark	\checkmark	✓	✓	✓	
Urban-Time FEs	\checkmark	\checkmark	✓	✓	✓	
Control: $Z_d \times 1_{\{t \ge t_0\}}$	\checkmark	\checkmark	\checkmark	✓	✓	
N	10,868	10,867	10,868	10,868	10,868	
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	9.118	0.007	14.365	0	1.936	
Mean $y_{dt}(P^+_{t} = 0, t > t_0)$	6.795	0.012	2.77	0.191	5.179	


Similar results when controlling for banks' UPI participation

Difference in P2M transaction values

	Total/pop	Total/cash	(Inc→Inc)/pop	(Inc↔Oth)/pop	(Oth→Oth)/pop
	(1)	(2)	(3)	(4)	(5)
$P_d^+ \times 1_{\{t > t_0\}}$	5.069***	0.00281***	8.510***	0.0613**	0.940*
	(4.97)	(4.80)	(5.95)	(2.12)	(1.94)
District FEs	✓	√	✓	✓	✓
State-Time FEs	\checkmark	\checkmark	✓	✓	✓
Control: $Z_d \times 1_{\{t \geq t_0\}}$	\checkmark	\checkmark	✓	✓	✓
Control: Exposure _d $\times 1_{\{t \ge t_0\}}$	\checkmark	\checkmark	✓	✓	✓
N	10,868	10,867	10,868	10,868	10,868
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	9.118	0.007	14.365	00	1.936
Mean $y_{dt}(P_d^+ = 0, t \ge t_0)$	6.795	0.012	2.77	0.191	5.179


Randomly shuffling F_d^+

Difference in P2M transaction values (Rupees per capita; 1000 random assignments)

Placebo t_0 (three months earlier)

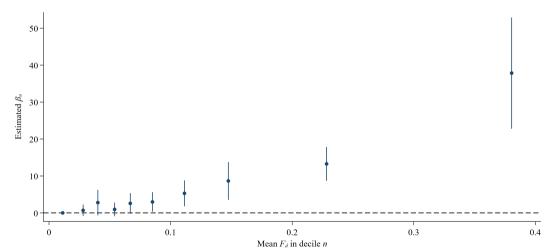
Difference in P2M transaction values (Rupees per capita; $t_0^{placebo} \coloneqq t_0 - 3$)

Aggregation procedure

1. Estimate impact of interoperability by fragmentation decile, relative to most unified:

$$y_{dt} = \alpha_d + \alpha_{st} + \sum_{n=2}^{10} \beta_n (F_d^n \times 1_{\{t \ge t_0\}}) + \beta_Z (Z_d \times 1_{\{t \ge t_0\}}) + e_{dt}$$

2. Sum estimated differential usage across districts, weighting by population:


$$\Delta y = \frac{\sum_{d} \sum_{n=2}^{10} \hat{\beta}_{n} \times F_{d}^{n} \times \text{Population}_{d}}{\sum_{d} \text{Population}_{d}}$$

3. Compare to estimated total usage ex-post in absence of interoperability:

$$\frac{\Delta y}{\frac{1}{13} \sum_{t \ge t_0} \left(\frac{\sum_d y_{dt} \times \text{Population}_d}{\sum_d \text{Population}_d} \right) - \Delta y} \times 100 = 57\%.$$

Impact of integration increases with initial fragmentation

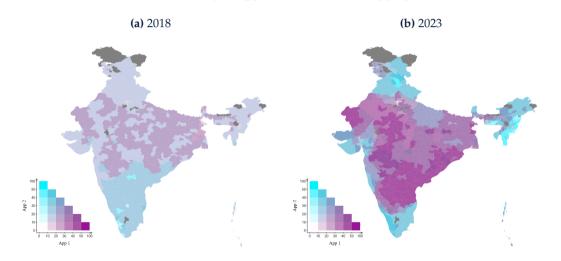
Estimated impacts of platform integration, by ex-ante fragmentation decile

NBFC lending saw growth from platform integration

Response of household level NBFC borrowing to platform integration

	NBFC Borrowing (Y/N)				
	(1)	(2)	(3)		
$P_d^+ \times 1_{\{t > t_0\}}$	0.0113**	0.0192**	0.0136***		
	(2.17)	(2.54)	(3.00)		
Household FEs	✓	✓	✓		
State-Wave FEs	✓	✓	\checkmark		
Control: $Z_d \times 1_{\{t \ge t_0\}}$	✓	✓	\checkmark		
Sample	All	Entrepreneurs	Hawkers		
N	898,412	54,161	22,387		
Mean $y_{dt}(P_d^+ = 1, t = t_{-1})$	0.0062	0.0118	0.0049		
Mean $y_{dt}(P_d^+ = 0, t \ge t_0)$	0.0137	0.0209	0.0153		

Notes: Standard errors are clustered at the district level. t-statistics are reported in parentheses. p < 0.10, ** p < 0.05, *** p < 0.01.



Growing regional concentration in largest apps' user bases

Shares of the two largest apps, by district (% of aggregate volume)

