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Abstract

This paper proposes new unit root tests that are more powerful when the error

term follows a non-normal distribution. The improved power is gained by utilizing the

additional moment conditions embodied in non-normal errors. Speci�cally, we follow

the work of Im and Schmidt (2008), using the framework of generalized methods

of moments (GMM), and adopt a simple two-step procedure based on the "residual

augmented least squares" (RALS) methodology. Our RALS-based unit root tests make

use of non-linear moment conditions through a computationally simple procedure. Our

Monte Carlo simulation results show that the RALS-based unit root tests have good

size and power properties, and they show signi�cant e¢ ciency gains when utilizing the

additional information contained in non-normal errors� information that is ignored in

traditional unit root tests.

JEL Classi�cation: C22, C12, C13.

Key Words: Unit root test, Generalized methods of moments (GMM), Residual augmented

least squares (RALS), Non-normality.
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1 Introduction

In this paper, we suggest new unit root tests that utilize the information contained in non-

normal errors in order to achieve improved power. The search for a more powerful unit root

test is not a trivial concern since it is well known that the traditional tests have relatively

low power. Our approach re-examines the conventional wisdom which tends to ignore or

downplay the non-normal distribution of the error term in least squares estimation. While it

is true that the limiting distribution of the usual unit root tests using least squares estimation

is not a¤ected by non-normality of the errors, this result does not necessarily imply that

the information embodied in non-normal errors is useless. This paper shows that, in the

presence of non-normality, more powerful unit root tests can be obtained by utilizing the

information in the higher moments of the errors� moments that are not used in the case of

traditional unit root tests estimated by least squares. To achieve the e¢ ciency gains and

improved power when constructing our tests, we extend the work of Im and Schmidt (2008)

and adopt a simple two-step procedure following the "residual augmented least squares"

(RALS) estimation. Although Im and Schmidt (2008) consider a family of models where

the estimator is consistent at rate
p
T , we show that the same e¢ ciency gains will follow for

the estimator having a higher rate of convergence when dealing with non-stationary data.

We �rst consider GMM estimators utilizing non-linear moment conditions to test for a unit

root, and show that the linearized RALS estimators using the same moment conditions

are asymptotically equivalent to the GMM estimators. Then, we will show that the newly

suggested RALS-based unit root tests utilizing higher moment conditions show substantial

power gains when the errors are non-normal.

When dealing with real-world data, it is not uncommon to �nd non-normality in many

time series variables. Non-normal distributions can occur for a variety of reasons, and this

phenomenon may not easily be distinguished from some forms of non-linearity. For example,

many �nancial time series variables have fat-tailed or leptokurtic distributions, which often

are modeled in a non-linear framework. In addition, some �nancial variables are charac-

terized by skewed distributions, which can occur when an asymmetric relationship exists
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in the data. In such instances, the non-linear exponential smooth transition autoregressive

(ESTAR) or logistic smooth transition autoregressive (LSTAR) models often are applied.

Furthermore, some economic time series variables have a mixture of di¤erent distributions,

which typically would be modeled in a non-linear framework including regime switching

models. Clearly, these examples illustrate that many cases of non-normality may be at-

tributed to non-linearity. Since traditional unit root tests ignore the information contained

in non-normal errors, it would be prudent to explore the way to achieve improved power.

RALS-based unit root tests provide a convenient procedure with which we can utilize the

higher moment conditions that exist under non-normality.

A handful of authors previously have investigated the possibility of utilizing the infor-

mation contained in non-normal errors when testing for a unit root. For example, Cox and

Llatas (1991) studied the asymptotic distribution of maximum likelihood estimators (MLE)

in the Dickey-Fuller regression assuming that the true error density is known. Lucas (1995)

derived the asymptotic distribution of the unit root test statistic based on the M-estimator.

Shin and So (1999) considered adaptive maximum likelihood estimators. The motivation

of our RALS-based unit root tests can be understood in a similar context. Our tests di¤er

from the above-mentioned approaches in a few important regards. First, it is not necessary

for us to specify a particular density function for the error term, the score function, or a

speci�c non-linear functional form. Since these generally are unknown a priori, our approach

o¤ers a great advantage over the aforementioned tests. Second, we do not need a non-linear

optimization procedure or convergence of iterations. Thus, a second major advantage of

our approach is the use of a linear framework that relies on least squares estimation. The

salient feature of our RALS-based unit root tests is that they make use of non-linear mo-

ment conditions through a computationally simple procedure. In addition, we note that the

distribution of the RALS-based estimator is asymptotically identical to that of the GMM

estimator using moment conditions. Thus, the linearized RALS unit root tests can achieve

the same e¢ ciency gains as that of the GMM estimator using non-linear moment conditions.

Our RALS-based tests are closely related to the pioneering work of Hansen (1995) who

suggested augmenting the unit root testing equation with stationary covariates, if available,

3



to gain increased power. Wooldridge (1993) and Qian and Schmidt (1999) also noted that

it is possible to increase e¢ ciency of estimation by augmenting the testing equation with

variables that are correlated with the error term. In so doing, the error variance of the

regression augmented with the stationary covariates will be smaller than that of the usual

Dickey-Fuller regression. Hansen�s test requires other stationary covariate variables to be

added to the testing equation. They must be correlated with the error term but uncorrelated

with the regressors. It is ofen di¢ cult to �nd such variables. The RALS unit root tests

are useful in this regard. Instead of looking for other stationary covariates, we can use

the information that a time series itself contains. Hansen (1995) shows that the asymptotic

distribution of the unit root test using stationary covariates is a mixture of the Dickey-Fuller

distribution and the standard normal distribution. Our RALS-based test statistic has the

same asymptotic distribution.

The rest of the paper is organized as follows. In Section 2, we derive the asymptotic

distribution of the GMM-based unit root tests. In Section 3, we propose the RALS-based

unit root tests and provide the asymptotic distribution when the errors are non-normal. In

Section 4, we provide simulation results to examine the performance of the RALS-based

unit root tests and compare them with other tests. Section 5 provides an empirical example

and section 6 provides concluding remarks.

2 GMM Unit Root Test Statistics

We �rst consider GMM estimators utilizing some moment restrictions for unit root tests

and derive the asymptotic distributions of the GMM estimators, as well as their associated

t-statistics. Consider a time series that follows:

yt = �yt�1 + "t; t = 1; 2; ::; T; (1)

where f"tg1t=1 is a sequence of innovations. For the unit root hypothesis, we are interested

in testing H0 : � = 1 against the alternative hypothesis HA : � < 1: We assume:

Assumption 1. "t =
Pp

j=1 aj"t�j + et; t = 1; 2; ::; T; where fetg1t=1 is an iid sequence with
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zero mean and a �nite second moment �2e; and all roots of a(z) = 1 �
Pp

j=1 ajz
j lie

outside of the unit circle.

When Assumption 1 is met, one may consider the Dickey-Fuller testing equation:

�yt = �yt�1 +

pX
j=1

�j�yt�j + et; t = 1; 2; ::; T; (2)

where �yt = yt � yt�1: Let �̂LS be the least squares estimator of � in regression (2). We

denote tLS as its t-statistic. Then it is well known, under the null hypothesis, that:

T �̂LS ) a(1)

�Z 1

0

W (r)2dr

��1 Z 1

0

W (r)dW (r); (3)

and:

tLS )
�Z 1

0

W (r)2dr

��1=2 Z 1

0

W (r)dW (r) = DF; (4)

where a(1) = 1�
Pp

j=1 aj; and W (r) is the standard Brownian motion on r 2 [0; 1]:

Let �t = (�yt�1;�yt�2; :::;�yt�p)
0 ; and zt = (yt�1; �

0
t)
0: Suppose we have J � (p + 1)

additional moment conditions:

E [g(et)
 zt] = 0; t = 1; 2; :::; (5)

where g(et) is a J � 1 vector that satis�es the following assumption.

Assumption 2. g(�) is di¤erentiable and satis�es the �rst-order Lipshitz condition��g0j(x)� g0j(y)
�� < M jx� yj for some constant M for all j; where gj(�) is the j-th element

of g(�). Also, E [g(et)] = 0; the second moment of g(et) exists, and E [g0(et)] <1:

De�ne C = E [g(et)g(et)
0] and D = E [g0(et)] ; and  (et) = D0C�1g(et); for t = 1; 2; ::; T:

Also de�ne the correlation between et and  (et) as:

� =
� e
� �e

(6)

where �2 = V ar [ (et)] = V ar [D0C�1g(et)] = D0C�1D; and � e = E [ (et)et] =DC
�1E [g(et)et] :

We let ~�G denote the GMM estimator using the moments conditions (5) in the ADF regres-

sion (2). The asymptotic distributions of ~�G and its corresponding t-statistic are given as

below.
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Theorem 1. Suppose that a time series follows (1), and Assumptions 1 and 2 are satis�ed.

Under the null hypothesis,

T ~�G )
a(1)

�e� 

�Z 1

0

W1(r)
2dr

��1 Z 1

0

W1(r)dW2; (7)

where [W1(r);W2(r)]
0 is a bivariate Brownian motion with correlation �:We de�ne the

corresponding t-statistic as tG = ~�G=se(~�G); where

se(~�G) = ~��1 

s�PT
t=1 y

2
t�1 �

PT
t=1 yt�1�t

�PT
t=1 �t�

0
t

��1PT
t=1 �

0
tyt�1

��1
; ~�2 =

~D0Ĉ�1 ~D;

~D = T�1
PT

t=1 g
0(~et); ~C = T�1

PT
t=1 g(~et)g(~et)

0; and ~et is the residual from GMM

estimation of regression (2). Then, we have:

tG ) �DF +
p
1� �2Z; (8)

where � is de�ned in (6), DF denotes the Dickey-Fuller distribution as de�ned in (4),

and Z signi�es the standard normal distribution which is independent of DF .

proof. See the Appendix.

In the case where an intercept is allowed in the model, we use the regression:

�yt = c+ �yt�1 +

pX
j=1

�j�yt�j + et; t = 1; 2; ::; T; (9)

and we have the additional moment conditions E
�
g(et)
 (1; zt)0

�
= 0: In view of the ex-

pression for the estimator of � in (A.9) of the Appendix, this produces the GMM estimator

that is given by:

T ~�G;� =

 
�2 T

�2
TX
t=1

~y2t�1

!�1
T�1

TX
t=1

~yt�1 (et) + op (1) ;

where ~yt�1 = yt�1 � T�1
PT

t=1 yt�1; t = 1; 2; ::; T: Consequently, we have:

T ~�G;� )
a(1)

� �e

Z 1

0

~W1(r)dW2(r)=

Z 1

0

~W1(r)
2dr; (10)
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where ~W1(r) is the demeaned Brownian motion: ~W1(r) = W1(r) �
R 1
0
W1(r)dr: Also, by

construction, we have

tG;� ) �DF� +
p
1� �2Z; (11)

whereDF� denotes the limiting distribution of the t-statistic from least squares in regression

(9).

Similarly, when the model includes a linear time trend and an intercept, we use the

regression

�yt = �1 + �2t+ �yt�1 +

pX
j=1

�j�yt�j + et; t = 1; 2; ::; T; (12)

and this will result in the GMM estimator that follows

T ~�G;� )
a(1)

� �e

�Z 1

0

�W1(r)
2dr

��1 Z 1

0

�W1(r)d �W2(r); (13)

where �W (r) is the detrended Brownian motion. Also,

tG;� ) �DF� +
p
1� �2Z; (14)

where DF� denotes the limiting distribution of the t-statistic for the OLS estimator of � in

the regression (12).

Remark 1. Each of the asymptotic distributions of tG; tG;�; and tG;� depends on the nui-

sance parameter �: Hansen (1995) reports the critical values of the asymptotic distri-

bution of these t-statistics for �2 = 0:1 to 1:0; at increments of 0:1.

3 RALS Unit Root Tests

Now, we explain the RALS estimator. We �rst consider the model with an intercept as

in (9), and use xt = (1; z0t)
0: We let g (et) =

�
et; [h(et)�K]0

�0
and consider the moment

condition E [g (et)
 xt] = 0: We can split this moment condition into two parts. The �rst

part is the usual moment conditions of least squares estimation:

E (et 
 xt) = 0: (15)
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The second part involves an additional 2(J � 1) moment conditions given by:

E [(h (et)�K)
 xt] = 0: (16)

Therefore, we have:

C =

24 �2e C 021

C21 C22

35 ; and D =

24 1

D2

35 ; (17)

where C21 = E [eth(et)] ; C22 = E [h(et)h(et)
0] ; and D2 = E [h0 (et)] :Then, we de�ne:

ŵt = h(êt)� K̂ � êtD̂2; t = 1; 2; ::; T; (18)

where êt is the OLS residual from the regression (9), K̂ = 1
T

PT
t=1 h(êt); and D̂2 =

1
T

PT
t=1 h

0(êt).

The RALS-based testing equation is given by:

�yt = �+ �yt�1 +

pX
j=1

�j�yt�j + ŵ0t
 + vt; t = 1; 2; ::; T: (19)

The RALS estimator is obtained through least squares estimation applied to (19). We

denote the estimator of � as ~�R;�, and the corresponding t-statistic for � = 0 is denoted as

tR;�: In the following, we show that the RALS estimator is asymptotically identical to the

GMM estimator using moment conditions (15) and (16).

Theorem 2. Suppose that a time series follows (1) with � = 1. Under Assumptions 1

and 2, the RALS estimator ~�R;� from (19) is asymptotically equivalent to the GMM

estimator ~�G;� using the moment conditions (15) and (16). In addition, the limiting

distributions of the RALS estimator ~�R;� and the t-statistic are the same as those of

the corresponding GMM estimators.

proof. See the Appendix.

When a linear time trend is included in the regression, we use:

�yt = �1 + �2t+ �yt�1 +

pX
j=1

�j�yt�j + ŵ0t
 + vt; t = 1; 2; ::; T: (20)
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By construction, the RALS estimator of � and the corresponding t-statistic will have the

same distributions as the corresponding GMM estimator and t-statistic as given in (13) and

(14), respectively. In addition, we can obtain similar results for the RALS tests using a

basic model without an intercept and a trend.

Next, we provide some guidance on how to apply the RALS procedure in practice.

� �2 is estimated by

�̂2 = �̂2A=�̂
2;

where �̂2 is the usual estimate of the error variance in the standard ADF regression,

and �̂2A is the estimate of the error variance in the RALS regression in (19) and (20).

See the proof of Theorem 2 [equations (A.16) and (A.19)]. Based on the estimated

value �̂2; we can use the same critical values reported in Hansen (1995).

� When the sample size is small (e.g. T � 50); one may impose the restriction of � = 0

in the �rst step regression that yields the residuals for the augmented variables in ŵt:

According to our simulations, this procedure signi�cantly improves the size property

of the test with only minimal e¤ects on power. When the sample is relatively big (e.g.,

T = 100), this e¤ect, however, disappears quickly.

4 Simulation Results

In this section, we investigate small sample properties of the RALS unit root tests. For

example, suppose we have a testing regression �yt = � + �yt�1 +
Pp

j=1 �j�yt�j + et; t =

1; 2; ::; T: In the �rst step, we can take the residuals from this usual Dickey-Fuller regression

and use them to construct ŵt as a function of the residuals, êt = �yt � �̂ � ~�yt�1 �Pp
j=1 �̂j�yt�j: When the sample size is small, we estimate � and � by imposing � = 0 and

construct the augmented variable ŵt from the residuals of the restricted regression: Then,

in the second step, the t-statistic is computed following the augmented RALS regression:

�yt = �+�yt�1+
Pp

j=1 �j�yt�j+
ŵt+vt: In our Monte Carlo study, we consider two RALS

estimators, RALS(2&3) and RALS(t5), each of which is described in more detail below.
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First, the estimator "RALS(2&3)" imposes the moment conditions that the second and

third moments of the errors are not correlated with the lagged dependent variables. There-

fore, we let h(êt) = [ê2t ; ê
3
t ]
0. Lettingmj = T�1

PT
t=1 ê

j
t ; for j = 2; 3; we have for RALS(2&3):

ŵt =
�
ê2t �m2; ê

3
t �m3 � 3m2"̂t

�0
; t = 1; 2; ::; T: (21)

The moment condition E [(e2t � �2e) yt�1] = 0 is the condition of no heteroskedasticity. This

condition improves the e¢ ciency of the estimator of � when the errors are not symmetric.

The restriction on the third moments conditional on yt�1 improves e¢ ciency unless �4 =

3�4; where �j = E(ejt). In general, knowledge of higher moments �j+1 are uninformative

if �j+1 = j�2�j�1: This is the redundancy condition identi�ed by MaCurdy (1982) and

Breusch et al. (1999): The normal distribution is the only distribution that satis�es the

redundancy condition. Thus, if the distribution of the error term is not normal, the condition

is not satis�ed. In such cases, one may increase e¢ ciency by augmenting ŵt in the testing

regression.

Second, the estimator "RALS(t5)" imposes the restrictions that arise from the score of

the maximum likelihood procedure when the error density is assumed to be a t-distribution

with 5 degrees of freedom. It may not be easy, perhaps, to justify using this particular density

function for empirical applications. However, this density function is a popular choice for

mimicking a fat-tailed distribution in the tests using the M-estimate for which a speci�c

density function is assumed. Thus, RALS(t5) would achieve the e¢ ciency gains when the

distribution of the errors has fat-tails. In this case, we have h(et) = (c+ 1) et=(c+ e2t ), and

D2 = (c+ 1) (c� e2t ) =(c+ e2t )
2 with c = 5: Therefore, in this scenario we have:

ŵt =
6êt
5 + ê2t

� 1

T

TX
t=1

6êt
5 + ê2t

� êt
1

T

TX
t=1

6 (5� ê2t )

(5 + ê2t )
2

(22)

There is no compelling reason behind choosing c = 5. However, it seems that the tests

are quite robust to the selection of di¤erent values of c. For example, our simulations that

use c = 3, which are not reported here to save space, indicate that the empirical size and

power of the tests are almost identical to the case when c = 5:To examine the size property,

we report the rejection ratio for � = 0:05 when � = 1. To examine the power, we use
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� = 0:9. We simulated the sample cases for T = 50 and 100: All the results are based on

5,000 replications.

We compare RALS(2&3) and RALS(t5) with three other test statistics: (a) DF, the

standard Dickey-Fuller test based on OLS; (b) AD, the test studied by Beelder (1996) and

Shin and So (1999) based on adaptive estimation; and (c) M5, the test based on the M-

estimate assuming that the true density is the student-t density with 5 degrees of freedom,

as studied by Lucas (1995). We replicated the four distributions simulated by Shin and So

(1999): (i) standard normal, (ii) t-distribution with df = 3, (iii) mixture normal: 0.5N(-

3,1)+0.5N(3,1), and (iv) chi-square with df = 1:The simulation results for AD and M5 are

reproduced from Shin and So (1999) for a comparison purpose.

Table 1 reports the results for the basic case when the errors, "t, in (1) are serially

independent. The number of ADF augmentation terms (p) is set to zero. As is seen in

Table 1, the sizes of the tests based on RALS(2&3) and RALS(t5) are quite close to the

nominal 5% throughout. The size properties are generally better than AD or M5. When

the error has a normal distribution, both RALS tests have correct sizes and the power is

close to that of the DF tests. The power gain over the standard DF test is substantial

when the errors are not normal. The overall power of RALS(2&3) and RALS(t5) compares

favorably to the power of AD or M5 in most cases. The performance of RALS(t5) and M5

are similar when the true density is the student-t with 3 degrees of freedom, but RALS(t5)

is more powerful when the density is mixture normal. When the true density is a chi-square

distribution with one degree of freedom, RALS(2&3) dominates all other tests in terms of

power. RALS(2&3) explicitly uses the moment condition that is useful when the error is

not symmetric. This result may look surprising since the RALS moment conditions do not

include the scores of the unknown log-density. But, the AD-based test does not seem to

capture the possible e¢ ciency gain from the non-symmetric feature of the error density.

In our simulated distributions, RALS(t5) is marginally better than RALS(2&3) when the

density is symmetric. However, as we can see for the case when the density is chi-square

with one degree of freedom, RALS(2&3) is generally better than RALS (t5) when the error

density is skewed. The di¤erence in power is quite substantial in some cases.
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In Tables 2 and 3, we compare the performance of the tests when the errors are serially

correlated. In doing so, we compare only three tests, ADF, RALS(2&3) and RALS(t5), in

two data generation processes:

AR : "t = 0:5"t�1 + et; t = 1; 2; :::;

and

MA : "t = et � 0:5et�1; t = 1; 2; ::::

We report the size and power of the cases using a �xed ADF augmentation lag at p = 2 and

p = 4 when T = 50; and p = 3 and p = 6 when T = 100. We also examine the cases when p

is selected by various information criterion. We simulated the Akaike and Schwarz criteria,

but report only the results from the Schwarz criterion since the results from the Akaike

criterion were similar. The minimum and maximum values of p are set at 2 and 4 when

T = 50; and at 3 and 6 when T = 100: We consider the case when the errors are generated

from the standard normal, Cauchy, student-t distribution with 2 degrees of freedom, double

exponential, chi-square distribution with 4 degrees of freedom, and beta(2,2) distribution.

The Cauchy and the t-distribution with 2 degrees of freedom do not satisfy Assumptions 1

and 2, so we do not know the asymptotic distributions of the statistics in this case. However,

it is interesting to see the performance of the tests in this situation. We report the results

for the model with a constant term. To save space, we omit the results when a linear time

trend is allowed, but the results are similar.

Table 2 presents the size and power properties of the ADF test, the RALS(2&3) test,

and the RALS(t5) test when the errors follow an AR(1) model. The overall pattern of the

results is similar. The sizes of all of the three tests are close to the 5% nominal size, even

when the errors are generated from a Cauchy or t-distribution with two degrees of freedom.

We note that the power di¤erence between the two tests based on OLS and RALS is the

greatest when the errors are generated from a Cauchy distribution. Also, as we observed in

Table 1, RALS(t5) is more powerful than RALS(2&3) for all the symmetric distributions.

However, RALS(2&3) is, in general, more powerful when the errors are asymmetric. In

particular, the power of the RALS(t5)-based test is lower than that of the OLS-based tests
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when the error is chi-square distributed with 4 degrees of freedom; the power of RALS(2&3)

is 63% while the power of RALS(t5) is 22% in the model without time trend for T = 100

and p = 3:

Table 3 presents the size and power properties of the three tests when the errors follow

an MA(1) model. When T = 50 and p is determined by the Schwarz criteria or when p is

�xed at 2, all of the tests tend to over-reject the null hypothesis. However, when p = 4 (for

T = 50), the size of all three tests is quite close to the 5% nominal size. By comparison,

when T = 100 the size of all three tests is reasonably close to the 5% nominal size. Thus

the overall size of both the RALS(2&3) and RALS(t5) tests seem as robust as the size of

the traditional ADF test. With regard to the power of the tests, we observe a pattern

similar to what was found in the case of AR(1) errors. Except for the case where the errors

follow a normal distribution, the RALS-based tests are substantially more powerful than

the OLS-based ADF tests, and the RALS(2&3) test compares favorably with the RALS(t5)

test.

We next examine the degree to which our RALS-based unit root tests are robust to

various forms of non-linearity. The RALS-based unit root tests exhibit e¢ ciency gains

with non-normal errors but these tests are not designed speci�cally to detect non-linearity.

However, we presume that some forms of non-linearity could be captured in non-normal

errors. Thus, we are interested in examining how much power the RALS-based tests have

against various forms of non-linearity. For this purpose, we follow the work of Choi and

Moh (2007) who considered sixteen non-linear model speci�cations and examined the power

of four popular non-linear unit root tests: the KSS test of Kapetanios et al. (2003) using an

ESTAR model; the sign test of So and Shin (2001); the M-TAR tests of Enders and Granger

(1998); and the Inf-t test of Park and Shintani (2005). To illustrate the data generating

process of these nonlinear models, we present the plot of the Gaussian kernel density function

in Figure 1, for each of these sixteen non-linear models. Using these various nonlinear model

speci�cations, we wish to examine the power of our RALS-based tests and compare with four

popular nonlinear tests as well as the traditional DF test. In this case, we let T = 50 and

100 and we use the 10% signi�cance level (results for the KSS, Sign, MTAR and Inf-t tests

13



are reproduced from Table 2 of Choi and Moh, 2008, p. 90, �1 = �2 = 0:9). The results in

Table 4 provide encouraging implications for our RALS-based tests: they are more powerful

than the other unit root tests in 14 out of 16 cases. The di¤erence in power between the

RALS-based tests and the other tests is signi�cant in most cases. The di¤erence in power

is negligible in the two remaining cases where the RALS-based tests are less powerful than

at least one of other tests (DGP 4 and 7). In short, although most of the non-linear tests

generally are not powerful against other forms of non-linearity, the RALS-based tests are

fairly robust to various forms of non-linearity, except for a few cases. All tests including

the RALS-based tests su¤er from a loss of power when structural changes occur in the data

(DGP 14 and 15). However, this result simply con�rms the initial �nding of Perron (1989)

who noted that unit root tests will lose power if existing breaks are ignored. Thus, in such

cases where the models are mis-speci�ed, all tests will be subject to size distortions and/or

loss of power.

Overall, our simulation results show that the RALS-based unit root tests remain powerful

under various forms of non-normal errors and under many non-linear alternatives.

5 An Application of the RALS Unit Root Test

We now present an empirical application of our new test by applying the RALS-based

unit root test "RALS(2&3)" to the CPI in�ation rate series of several OECD countries.

Knowledge of the long-run properties of the in�ation rate (or the aggregate price level) is a

key component for policy makers, applied econometricians and �nancial analysts who seek

to understand or a¤ect the behavior of the macroeconomy. For example, forecasters who

seek to project expected or future in�ation rates must know whether or not in�ation rates

are stationary when building their models. Similarly, o¢ cials who seek to use monetary

policy to a¤ect the behavior of macroeconomic variables also must have knowledge of the

long-run properties of in�ation when constructing optimal commodity price rules or when

engaging in in�ation rate targeting. In addition, �nancial planners who, for example, rely

on the capital asset pricing model also must understand the long-run behavior of in�ation.

14



Yet the question of whether or not the in�ation rate is stationary still is widely disputed

in the literature. Numerous researchers, employing various methodologies applied to the

in�ation rates of several di¤erent countries, have found this series to be non-stationary (see,

for example, Crowder and Ho¤man (1996), Rapach and Weber (2004), Crowder and Pheng-

pis (2007)). At the same time, several authors have concluded that in�ation is stationary

(see, for example, Baillie, Chung and Tieslau (1996), and Costantini and Lupi (2007)). This

contradiction in the empirical results on the in�ation rate might be due, in part, to the

low power of traditional unit root tests. We wish to examine whether or not accounting

for non-normality in the series will make a di¤erence. Since our test will be more powerful

in the face of departures from normality or apparent non-linearities, we seek to shed light

on the issue of whether or not in�ation is stationary through the application of our more

powerful tests.

The series used in our analysis are the �rst-di¤erences of the log of the monthly consumer

price index series (all items) for 12 OECD countries.1 The data were taken from the In-

ternational Monetary Fund�s "International Financial Statistics" CD rom (July 2009), and

span the period from January of 1957 through April of 2009. We analyze these in�ation

rates applying the RALS(2&3) test from both (19) and (20). The �rst step of the procedure

begins by conducting the traditional Dickey-Fuller unit root test while choosing the optimal

number of augmentation terms to ensure non-correlated errors in the testing equation.2 The

OLS residuals from this equation are then retained for use in the second step. The second

step involves estimation of the RALS unit root testing equation, which is an augmented

version of the original Dickey-Fuller equation.

The results of the RALS unit root test are presented in table 5. In the case where the

testing equation includes only an intercept, the RALS unit root test rejects the null of a

1The countries are: Belgium, Canada, Finland, France, Italy, Japan, Luxembourg, the Netherlands,

Norway, Spain, the UK and the USA.
2One may choose the optimal lag length following the usual practice. For example, one can determine

the optimal number of augmentation terms using the sequential t-test, following Ng and Perron (1995), or

through use of the traditional Akaike Information Criteria or Schwartz Criteria, or other similar methods.

In our application, we followed the procedure of Ng and Perron (1995) with a maximum of 12 lags.
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unit root in 8 out of 12 cases, while the Dickey-Fuller unit root test rejects the null in

only 3 of 12 cases. Similarly, when allowing for both a constant and a trend in the testing

equation, the RALS unit root test rejects the null in 7 of 12 cases, while the Dickey-Fuller

test rejects the null in only 2 cases. The ability of the RALS unit root test to reject the

null in signi�cantly more cases lends support to the notion that our test is better able to

distinguish non-normality from non-stationarity.

6 Concluding Remarks

This paper proposes new unit root tests that are more powerful when the error term follows a

non-normal distribution. The improved power is gained by utilizing more moment conditions

through a computationally simple procedure. Speci�cally, we extend the residual augmented

least squares (RALS) estimator proposed by Im and Schmidt (2008) in order to use the

information implied by non-normal errors in testing for a unit root hypothesis. We show that

the asymptotic distribution of our simple RALS-based estimator is the same as that of the

GMM estimator. Our Monte Carlo simulation results show that the size of the RALS-based

unit root tests is quite close to the asymptotic size, and the power is improved signi�cantly

over the usual Dickey-Fuller tests when the error is not normal. As such, our �ndings show

signi�cant e¢ ciency gains when the information on non-normality is utilized, although this

information is ignored in traditional unit root tests. In addition, it is encouraging to see that

the RALS-based unit root tests remain powerful under many cases of non-linear alternatives,

when compared with other popular non-linear unit root tests. While it still is desirable to

obtain the best possible model speci�cations, this paper shows that we can achieve increased

power by utilizing the additional information on non-normal errors, if any, which a time series

itself contains.

16



A Appendix

Lemma A1. We let zt = (yt�1; �
0
t)
0, as de�ned previously in equation (5). We de�ne a

(p+ 1) � (p + 1) matrix, �T = diag
�
T;
p
T ; :::;

p
T
�
: Assume that Assumptions 1

and 2. Then, we have under the null hypothesis:

TX
t=1

�
g0(et)
��1T ztz

0
t�

�1
T

�
) D 


Z
zz0; (A.1)

TX
t=1

g(et)g(et)
0 
��1T ztz

0
t�

�1
T ) C 


Z
zz0; (A.2)

where
R
zz0 = diag

�
a(1)�2�2e

R 1
0
W1 (r)

2 dr; E (�t�
0
t)
�
; and C and D are de�ned in

(17). Also, we have:

TX
t=1

 (et)�
�1
T zt =

24 T�1
PT

t=1  ("t)yt�1

T�1=2
PT

t=1  ("t)�t

35)
24 � �"

a(1)

R 1
0
W1(r)dW2(r)

�

35 ; (A.3)

where � is a p� p multivariate normal variable with covariance matrix �2 E (�t�
0
t) :

proof. Lucas (1995, Lemma 1 in Appendix). See also Hansen (1995, Lemma).

Lemma A2. � is de�ned as in equation (6). Then,

� =
1

�e� 
: (A.4)

Also,

1

�2 
= �2e �

�
C21 � �2eD2

�0 �
C22 + �2eD2D

0
2 � C21D

0
2 �D2C

0
21

��1 �
C21 � �2eD2

�
: (A.5)

proof. The �rst result follows from a routine matrix algebra using the partitioned inverse

lemma. For the second result, a straightforward algebra gives:

�
D0C�1D

��1
= �2e

�
1 +

�
C21 � �2eD2

�0 �
�2eC22 � C21C

0
21

��1 �
C21 � �2eD2

���1
;

which is the same as 1=�2 ; see Amemiya (1985, p. 461, Lemma 20).
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PROOF OF THEOREM 1: We note that the entire proof follows immediately from Lu-

cas (1995, Theorem 1) since the GMM estimator is obtained by solving the score
PT

t=1 [DC
�1g(et)zt] =PT

t=1 [ (et)zt] = 0, and this score could be viewed as that of the M-estimate. Here, we pro-

vide more details. Let � = (�; �1; �2; :::; �p)
0 : The GMM estimator is obtained by solving:

min
�

TX
t=1

[g(et)
 zt]
0 �̂�1

TX
t=1

[g(et)
 zt] ; (A.6)

where �̂ =
�PT

t=1 g(êt)g(êt)
0 
 ztz

0
t

�
; and êt is the residual from an initial consistent esti-

mator of �: Taking the derivative with respect to �; we obtain the score:

TX
t=1

[g0(~et)
 ztz
0
t]
0
�̂�1

TX
t=1

[g(~et)
 zt] = 0; (A.7)

where ~et = �yt� zt~�; and ~� is the GMM estimator. The Taylor series expansion of the termPT
t=1 [g(~et)
 zt] with respect to the true disturbance et and premultiplication of IJ 
 ��1T

yields:

TX
t=1

�
g(~et)
��1T zt

�
(A.8)

=
TX
t=1

h
g(et)
��1T zt � g0(et)
��1T ztz

0
t�

�1
T �T

�
~� � �

�i
+ op (1) :

Solving (A.7) with respect to �T
�
~� � �

�
; after substituting (A.8) into (A.7), we obtain:

�T (~� � �) = (A.9)8<:
TX
t=1

�
g0(~et)
��1T ztz

0
t�

�1
T

�0 " TX
t=1

g(êt)g(êt)
0 
��1T ztz

0
t�

�1
T

#�1 TX
t=1

�
g0(et)
��1T ztz

0
t�

�1
T

�9=;
�1

�

8<:
TX
t=1

�
g0(~et)
��1T ztz

0
t�

�1
T

�0 " TX
t=1

g(êt)g(êt)
0 
��1T ztz

0
t�

�1
T

#�1 TX
t=1

�
g(et)
��1T zt

�9=;+ op(1):

Noting that:
TX
t=1

�
[g0(~et)� g0(et)]
��1T ztz

0
t�

�1
T

	
= op (1) ;

and:
TX
t=1

�
[g(êt)g(êt)

0 � g(et)g(et)
0]
��1T ztz

0
t�

�1
T

	
= op (1) ;
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we have, from Lemma A1:

T ~�G )
a(1)

� �e

�Z 1

0

W1(r)
2dr

��1 Z 1

0

W1(r)dW2(r); (A.10)

where [W1(r);W2(r)] is a bivariate Brownian motion with correlation �: Then, we have for

the t-statistic:

tG )
�Z 1

0

W1(r)
2dr

��1=2 Z 1

0

W1(r)dW2(r); (A.11)

which is a mixture of the Dickey-Fuller and the standard normal distribution described in

(8). To see this, note:

T�1=2
[rT ]X
t=1

24 et

 (et)

35)
24 �eW1 (r)

� W2 (r)

35 ; (A.12)

where [rT ] denotes the integer part of rT: Therefore:

W2 (r) = �W1 (r) +
p
1� �2W3 (r) ; (A.13)

where W3 (r) is independent of W1(r): The result follows if we note that:�Z 1

0

W1(r)
2d(r)

��1=2 Z 1

0

W1(r)dW3(r)

is standard normal.

PROOF OF THEOREM 2: De�ne a variable as a function of true disturbances:

wt = h(et)�K � etD2; t = 1; 2; ::; T:

The variables in wt are not observable, but we momentarily assume that they are observed.

Then we show that the augmentation of wt or ŵt asymptotically yields the same estimator

of T�: Consider a regression:

�yt = �1 + �yt�1 +

pX
j=1

�j�yt�j + w0t
 + vt; t = 1; 2; ::; T: (A.14)

Therefore,

et = w0t
 + vt; t = 1; 2; ::: (A.15)
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Let �̂
�
A be the least squares estimator of � from regression (A.14), �2v = V ar(vt); and:

� =
�ev
�e�v

=
�v
�e
; (A.16)

where �ev = E("tvt): The second equality of (A.16) follows since wt and vt are not correlated,

so that �ev = �2v: From Hansen (1995, Theorem 2 and 3), we have:

T �̂
�
A )

�v
�e

�Z 1

0

W4(r)
2

��1 Z 1

0

W4(r)dW5(r); (A.17)

and for the t-statistic:

t�A = �DF� +
p
1� �2N(0; 1); (A.18)

where [W4(r);W5(r)]
0 is the bivariate Brownian motion with correlation �: Next, we will

show that:

� = �: (A.19)

Note that 
 = E(wtw
0
t)
�1E(wtet); so we have:

�2v = �2e � E(etw
0
t)E(wtw

0
t)
�1E(wtet): (A.20)

Also, E(wtet) = C21 � �2eD2 and E(wtw0t) = C22 + �2"D2D
0
2 � C21D

0
2 �D2C

0
21: Therefore,

�2v = �2e �
�
C21 � �2"D2

�0 �
C22 + �2"D2D

0
2 � C21D

0
2 �D2C

0
21

��1 �
C21 � �2"D2

�
;

which becomes 1=�2 from Lemma A1. Therefore, we have � = �:

Now we let �̂A be the OLS estimator of � in the regression (19). The proof is complete

if we show that T �̂A and T �̂
�
A are identical asymptotically. Let �̂t =

�
~�
0
t; ŵ

0
t

�0
; where

~�t = �t � T�1
PT

t=1 �t: Then we have:

T �̂A =

T�1
�PT

t=1 ~yt�1et �
PT

t=1 ~yt�1�
0
t

�PT
t=1
~�t~�

0
t

��1PT
t=1
~�tet

�
T�2

�PT
t=1 ~y

2
t�1 �

PT
t=1 ~yt�1�

0
t

�PT
t=1
~�t~�

0
t

��1PT
t=1 �t~yt�1

� ;
Since T�1

PT
t=1 ŵt�

0
t = op(1); and T�1

PT
t=1
~�tet = op(1); we have:

T �̂A =

T�1
�PT

t=1 ~yt�1et �
PT

t=1 ~yt�1ŵ
0
t

�PT
t=1 ŵtŵ

0
t

��1PT
t=1 ŵ

0
tet

�
T�2

�PT
t=1 ~y

2
t�1

� + op(1):
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Similarly,

T �̂
�
A =

T�1
�PT

t=1 ~yt�1et �
PT

t=1 ~yt�1w
0
t

�PT
t=1 ~wt ~w

0
t

��1PT
t=1 ~w

0
tet

�
T�2

�PT
t=1 ~y

2
t�1

� + op(1):

T �̂A and T �̂
�
A are asymptotically identical if T

�1P ~yt�1 (ŵt � wt) = op (1) : However:

T�1
X

~yt�1ŵt = T�1
X

~yt�1

h
h("t) + ("̂t � "t)h

0 ("t)� "̂tD̂2

i
+ op(1)

Therefore,

T�1
X

~yt�1 (ŵt � wt) (A.21)

= T�1
X

~yt�1

h
("̂t � "t)h

0 ("t)� ("̂t � "t)D̂2 � "t

�
D̂2 �D2

�i
+ op(1)

but,

T�1
X

~yt�1("̂t � "t)h
0 ("t) = T

�
�̂ � �

�
T�2

X
~y2t�1h

0("t) + op(1); (A.22)

T�1
X

~yt�1("̂t � "t)D̂2 = D̂2T
�
�̂ � �

�
T�2

X
~y2t�1 + op(1); (A.23)

and:

T�1
X

~yt�1"t

�
D̂2 �D2

�
= op(1): (A.24)

The two terms (A.22) and (A.23) cancel each other in the limit in (A.21), so the proof is

complete.
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Table 1 
Rejection Ratio of Various Tests  

No Serial Correlations, 5% significance level 
  
     No Time Trend 

 T=50 T=100

Distributions  DF AD  M5 RALS RALS DF AD  M5 RALS RALS 
     (2&3)   (t5)     (2&3)   (t5) 

Normal φ = 1 0.060 0.043 0.094 0.054 0.059  0.051 0.049 0.069 0.051 0.051 
 φ = 0.9 0.146 0.091 0.198 0.132 0.136 0.352 0.263 0.346 0.311 0.330 
 
Student t φ = 1 0.058 0.045 0.052 0.051 0.050 0.053 0.067 0.037 0.051 0.051 
df=3 φ = 0.9 0.139 0.197 0.291 0.270 0.296 0.358 0.535 0.649 0.615 0.676 
 
Mixture φ = 1 0.055 0.040 0.178 0.044 0.045 0.058 0.049 0.130 0.045 0.044 
Normal φ = 0.9 0.145 0.790 0.217 0.850 0.916 0.361 0.991 0.281 0.995 0.998 
 
Chi-square φ = 1 0.046 0.048 0.058 0.043 0.045 0.052 0.047 0.036 0.041 0.045 
df=1 φ = 0.9 0.126 0.360 0.332 0.909 0.339 0.355 0.796 0.666 0.999 0.723 
 
    With Linear Trend

 T=50 T=100

Distributions  DF AD  M5 RALS RALS DF AD  M5 RALS RALS 
     (2&3)   (t5)     (2&3)   (t5) 

Normal φ = 1 0.062 0.025 0.148 0.054 0.057 0.057 0.035 0.078 0.054 0.055 
 φ = 0.9 0.109 0.049 0.204 0.092 0.099 0.216 0.129 0.251 0.191 0.206 
 
Student t φ = 1 0.064 0.026 0.062 0.060 0.052 0.054 0.039 0.036 0.049 0.049 
df=3 φ = 0.9 0.100 0.120 0.231 0.187 0.192 0.197 0.386 0.495 0.441 0.507 
 
Mixture φ = 1 0.054 0.024 0.292 0.042 0.044 0.053 0.027 0.192 0.042 0.043 
Normal φ = 0.9 0.097 0.628 0.258 0.669 0.784 0.219 0.981 0.255 0.981 0.996 
 
Chi-square φ = 1 0.055 0.026 0.064 0.045 0.051 0.055 0.038 0.048 0.039 0.049 
df=1 φ = 0.9 0.081 0.251 0.277 0.797 0.224  0.202 0.647 0.506 0.991 0.529 
 
The 5% significance level was used.  AD denotes the test based on the adaptive MLE of Shin and So 
(1999) and M5 is the test of Lucas (1995) using the M-estimate assuming that the error density is the 
student-t with 5 degrees of freedom. Mixture normal is 0.5N(-3,1) + 0.5N(3,1). All the figures for AD and 
M5 have been reproduced from Shin and So (1999).   
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Table 2 
Rejection Ratio of Various Tests  

AR(1) error with AR coefficient 0.5 (No Time Trend) 
 
 T = 50

Distributions  ADF RALS(2&3) RALS(t5) 
 p=2 p=4 SC p=2 p=4 SC p=2 p=4 SC 

Normal φ = 1 0.056 0.055 0.071 0.053 0.054 0.061 0.054 0.053 0.067 
 φ = 0.9 0.100 0.080 0.116 0.087 0.074 0.097 0.093 0.073 0.110 
 
Cauchy φ = 1 0.075 0.079 0.055 0.046 0.053 0.063 0.048 0.059 0.051 
 φ = 0.9 0.074 0.074 0.088 0.664 0.599 0.698 0.567 0.504 0.568 
 
Student t φ = 1 0.063 0.060 0.056 0.050 0.054 0.064 0.049 0.056 0.055 
df=2 φ = 0.9 0.080 0.069 0.089 0.300 0.252 0.326 0.343 0.281 0.341 
 
Double φ = 1 0.051 0.053 0.059 0.048 0.050 0.057 0.049 0.051 0.058 
Exponential φ = 0.9 0.091 0.084 0.109 0.131 0.110 0.150 0.151 0.120 0.161 
 
Chi-square φ = 1 0.051 0.058 0.061 0.050 0.045 0.032 0.052 0.051 0.061 
4 df φ = 0.9 0.094 0.080 0.110 0.260 0.202 0.191 0.091 0.081 0.106 
 
Beta(2,2) φ = 1 0.060 0.055 0.073 0.057 0.050 0.059 0.053 0.047 0.060 
 φ = 0.9 0.100 0.087 0.121 0.126 0.101 0.133 0.131 0.103 0.149 
 

T = 100

Distributions  ADF RALS(2&3) RALS(t5) 
 p=3 p=6 SC p=3 p=6 SC p=3 p=6 SC 

Normal φ = 1 0.055 0.053 0.061 0.056 0.048 0.052 0.055 0.051 0.056 
 φ = 0.9 0.217 0.163 0.243 0.196 0.142 0.217 0.207 0.145 0.230 
 
Cauchy φ = 1 0.080 0.076 0.055 0.040 0.042 0.055 0.045 0.050 0.042 
 φ = 0.9 0.144 0.125 0.181 0.907 0.852 0.943 0.796 0.775 0.803 
 
Student t φ = 1 0.053 0.053 0.050 0.049 0.052 0.067 0.050 0.047 0.049 
df=2 φ = 0.9 0.190 0.134 0.220 0.610 0.512 0.678 0.716 0.616 0.740 
 
Double φ = 1 0.059 0.053 0.062 0.055 0.050 0.063 0.055 0.047 0.056 
Exponential φ = 0.9 0.216 0.155 0.246 0.321 0.231 0.362 0.377 0.273 0.400 
 
Chi-square φ = 1 0.052 0.048 0.052 0.046 0.048 0.025 0.050 0.045 0.047 
df=4 φ = 0.9 0.224 0.156 0.242 0.629 0.480 0.556 0.217 0.157 0.237 
 
Beta(2,2) φ = 1 0.057 0.053 0.063 0.048 0.048 0.052 0.050 0.046 0.054 
 φ = 0.9 0.216 0.155 0.246 0.324 0.225 0.355 0.343 0.235 0.376 
 

 26



Table 3 
Rejection Ratio of Various Tests  

MA(1) error with MA coefficient  −0.5 (No Time Trend) 
 

T = 50

Distributions ADF RALS(2&3) RALS(t5) 
 p=2 p=4 SC p=2 p=4 SC p=2 p=4 SC 

Normal φ = 1 0.088 0.054 0.095 0.079 0.051 0.079 0.085 0.052 0.091 
 φ = 0.9 0.227 0.109 0.231 0.190 0.091 0.182 0.205 0.097 0.208 
 
Cauchy φ = 1 0.102 0.077 0.079 0.180 0.092 0.194 0.109 0.068 0.108 
 φ = 0.9 0.163 0.087 0.177 0.853 0.712 0.867 0.625 0.557 0.622 
 
Student t φ = 1 0.091 0.060 0.079 0.109 0.060 0.123 0.102 0.059 0.101 
df=2 φ = 0.9 0.198 0.089 0.199 0.538 0.347 0.547 0.553 0.379 0.539 
 
Double φ = 1 0.083 0.053 0.085 0.088 0.050 0.094 0.087 0.054 0.090 
Exponential φ = 0.9 0.219 0.104 0.216 0.285 0.149 0.289 0.320 0.168 0.313 
 
Chi-square φ = 1 0.085 0.050 0.088 0.108 0.054 0.070 0.079 0.051 0.082 
df=4 φ = 0.9 0.223 0.102 0.227 0.522 0.282 0.425 0.209 0.098 0.212 
 
Beta(2,2) φ = 1 0.095 0.054 0.101 0.086 0.051 0.084 0.087 0.050 0.090 
 φ = 0.9 0.237 0.112 0.241 0.259 0.135 0.250 0.276 0.140 0.277 
 

T = 100

Distributions ADF RALS(2&3) RALS(t5) 
 p=3 p=6 SC p=3 p=6 SC p=3 p=6 SC 

Normal φ = 1 0.050 0.049 0.057 0.052 0.046 0.053 0.050 0.046 0.056 
 φ = 0.9 0.260 0.187 0.287 0.230 0.172 0.257 0.246 0.176 0.269 
 
Cauchy φ = 1 0.078 0.073 0.049 0.041 0.044 0.057 0.040 0.042 0.036 
 φ = 0.9 0.171 0.134 0.207 0.938 0.889 0.962 0.785 0.776 0.796 
 
Student t φ = 1 0.053 0.048 0.048 0.050 0.047 0.065 0.048 0.046 0.050 
df=2 φ = 0.9 0.235 0.159 0.266 0.682 0.570 0.745 0.771 0.666 0.798 
 
Double φ = 1 0.058 0.051 0.059 0.052 0.050 0.058 0.053 0.048 0.054 
Exponential φ = 0.9 0.263 0.187 0.303 0.379 0.280 0.444 0.440 0.321 0.486 
 
Chi-square φ = 1 0.047 0.044 0.050 0.046 0.045 0.027 0.041 0.043 0.045 
df=4 φ = 0.9 0.254 0.183 0.293 0.705 0.543 0.650 0.248 0.174 0.286 
 
Beta(2,2) φ = 1 0.051 0.047 0.059 0.047 0.046 0.053 0.049 0.045 0.052 
 φ = 0.9 0.253 0.186 0.296 0.372 0.265 0.407 0.391 0.280 0.438 
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Table 4 
Rejection Ratio of Various Tests  

Under Various Nonlinear Models (No Time Trend) 
 

DGP Model  DF KSS  Sign MTAR Inf-t RALS 
(2&3) 

RALS 
(t5) 

   T = 50
1 AR(1)  0.29 0.19 0.19 0.08 0.09 0.411 0.376 
2 Generalized AR(1)   0.29 0.19 0.19 0.08 0.19 0.411 0.376 
3 Bilinear   0.29 0.22 0.17 0.10 0.25 0.425 0.388 
4 Nonlinear AR  0.95 0.59 0.99 1.00 1.00 0.897 0.903 
5 Squared Relation  0.69 0.44 0.59 0.50 0.66 0.822 0.695 
6 Exponential Relation 0.76 0.76 0.67 0.67 0.76 0.853 0.795 
7 Bilinear   0.95 0.59 0.99 1.00 1.00 0.897 0.901 
8 SETAR(1)  0.22 0.15 0.16 0.06 0.14 0.372 0.328 
9 EQ-TAR   0.22 0.16 0.17 0.06 0.16 0.359 0.316 

10 Band TAR        0.19 0.12 0.12 0.04 0.13 0.319 0.262 
11 ESTAR   0.19 0.13 0.14 0.05 0.13 0.332 0.293 
12 LSTAR  0.50 0.26 0.35 0.25 0.37 0.577 0.551 
13 Markov-switching     0.46 0.30 0.41 0.24 0.37  0.505 0.510 
14 Level Shift  0.08 0.08 0.08 0.02 0.06 0.144 0.114 
15 Multiple Shift      0.00 0.00 0.05 0.01 0.00 0.008 0.004 
16 Variance Shift  0.30 0.28 0.23 0.09 0.30 0.470 0.395 

  
   T = 100
1 AR(1)  0.52  0.37  0.47  0.21  0.42  0.590  0.569  
2 Generalized AR(1)   0.52  0.37  0.46  0.21  0.41  0.590  0.569  
3 Bilinear   0.56  0.40  0.39  0.20  0.54  0.577  0.547  
4 Nonlinear AR  0.99  0.77  1.00  1.00  1.00  0.968  0.973  
5 Squared Relation  0.86  0.60  0.88  0.81  0.89  0.949  0.863  
6 Exponential Relation 0.76 0.82  0.84  0.84  0.82  0.97  0.920  
7 Bilinear   0.99  0.77  1.00  1.00  1.00  0.968  0.973  
8 SETAR(1)  0.36  0.28  0.36  0.10  0.28  0.442  0.423  
9 EQ-TAR   0.33  0.34  0.33  0.10  0.32  0.409  0.398  
10 Band TAR        0.21  0.18  0.24  0.05  0.17  0.307  0.284  
11 ESTAR   0.25  0.21  0.29  0.07  0.20  0.343  0.313  
12 LSTAR  0.84  0.46  0.69  0.66  0.75  0.803  0.791  
13 Markov-switching     0.77  0.49  0.75  0.57  0.70  0.727 0.775 
14 Level Shift  0.08  0.12  0.19  0.03  0.09  0.121  0.097  
15 Multiple Shift      0.00  0.00  0.24  0.00  0.00  0.000  0.000  
16 Variance Shift  0.47  0.41  0.48  0.25  0.54  0.587  0.536  

 
The 10% significance level was used in this table. 
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 With Linear Trend 
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 No Time Trend

*significant at 5%. 

Belgium   −3.160 0.91  −3.338 −2.838 
Canada   −2.324 0.92  −3.348 −2.189 
Finland   −3.099 0.78  −3.246 −2.578 
France   −3.328* 0.76  −3.235 −3.255 
Italy   −4.424* 0.77  −3.244 −2.100 
Japan   −6.329* 0.83  −3.287 −3.350 
Luxembourg   −2.365 0.80  −3.268 −2.599 
Netherlands   −3.867* 0.59  −3.079 −3.466* 
Norway   −3.540* 0.77  −3.245 −3.594* 
Spain   −3.774* 0.83  −3.290 −2.582 
UK   −3.974* 0.80  −3.266 −2.528 
USA   −2.302 0.82  −3.282 −2.401 

Country  RALS(2&3) 2ρ̂  5% cv ADF 
 

Belgium   −2.967* 0.90  −2.810 −2.642 
Canada   −2.167 0.92  −2.817 −2.013 
Finland   −3.161* 0.78  −2.745 −2.240 
France   −3.303* 0.76  −2.740 −3.296* 
Italy   −4.544* 0.77  −2.741 −1.943 
Japan   −6.346* 0.81  −2.758 −2.430 
Luxembourg   −2.331 0.80  −2.752 −2.482 
Netherlands   −3.140 0.59  −2.637 −3.201* 
Norway   −3.359* 0.77  −2.745 −3.261* 
Spain   −3.527* 0.83  −2.772 −2.311 
UK   −3.746* 0.80  −2.754 −2.305 
USA   −2.326 0.82  −2.764 −2.330 

 

Table 5 
Empirical Application of Inflation Rates 

 

 



 
     (1) AR(1) (2) Generalized AR(1)                         (3) Bilinear                         (4) Nonlinear AR 

 
     (5) Squared Relation (6) Exponential Relation                    (7) Bilinear                         (8) SETAR(1) 

 
     (9) EQ-TAR  (10) Band TAR                                    (11) ESTAR                         (12) LSTAR 

 
     (13) Markov-switching    (14) Level Shift  (15) Multiple Shift                               (16) Variance Shift 

Figure 1.  The Distribution of the Data Following Various Forms of Nonlinear Model
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